best linear unbiased estimators (BLUE);
density regression;
exact inference;
gamma random variable;
proportional hazards distribution family;
regression analysis;
GENERALIZED LINEAR-MODELS;
DISPERSION;
D O I:
10.3390/e17063679
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
This paper develops a class of density regression models based on proportional hazards family, namely, Gamma transformation proportional hazard (Gt-PH) model. Exact inference for the regression parameters and hazard ratio is derived. These estimators enjoy some good properties such as unbiased estimation, which may not be shared by other inference methods such as maximum likelihood estimate (MLE). Generalised confidence interval and hypothesis testing for regression parameters are also provided. The method itself is easy to implement in practice. The regression method is also extended to Lasso-based variable selection.
机构:
Mem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, 633 3rd Ave,Fl 3, New York, NY 10017 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, 633 3rd Ave,Fl 3, New York, NY 10017 USA
Fei, Teng
Hanfelt, John J.
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Biostat & Bioinformat, 1518 Clifton Rd, Northeast Atlanta, GA 30322 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, 633 3rd Ave,Fl 3, New York, NY 10017 USA
Hanfelt, John J.
Peng, Limin
论文数: 0引用数: 0
h-index: 0
机构:
Emory Univ, Dept Biostat & Bioinformat, 1518 Clifton Rd, Northeast Atlanta, GA 30322 USAMem Sloan Kettering Canc Ctr, Dept Epidemiol & Biostat, 633 3rd Ave,Fl 3, New York, NY 10017 USA