On some global and local geometric properties of Musielak-Orlicz spaces

被引:0
|
作者
Hudzik, H [1 ]
Kowalewski, W [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-61614 Poznan, Poland
来源
PUBLICATIONES MATHEMATICAE-DEBRECEN | 2005年 / 67卷 / 1-2期
关键词
Musielak-Orlicz sequence space; Luxemburg norm; Amemiya norm; SU-points; compact local uniform rotundity; Kadec-Klee property; points of local uniform rotundity;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
It is well known that any SU-point is an exposed point and any LUR-point is a strongly exposed point. Conditions which complete exposed points and strongly exposed points to SU-points and LUR points (respectively) are found. Criteria for SU-points in Musielak-Orlicz spaces with the Luxemburg and the Orlicz norms are given. Moreover, criteria for compact local uniform rotundity of Musielak-Orlicz sequence spaces are established.
引用
收藏
页码:41 / 64
页数:24
相关论文
共 50 条
  • [21] SUMMABILITY IN MUSIELAK-ORLICZ HARDY SPACES
    Liu, Jun
    Xia, Haonan
    [J]. JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2023, 60 (05) : 1057 - 1072
  • [22] ON MULTIFUNCTIONALS IN THE MUSIELAK-ORLICZ SPACES OF MULTIFUNCTIONS
    KASPERSKI, A
    [J]. MATHEMATISCHE NACHRICHTEN, 1994, 168 : 161 - 169
  • [23] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    [J]. Science China Mathematics, 2019, 62 : 1567 - 1584
  • [24] Weak Musielak-Orlicz Hardy Spaces
    Yang, Dachun
    Liang, Yiyu
    Luong Dang Ky
    [J]. REAL-VARIABLE THEORY OF MUSIELAK-ORLICZ HARDY SPACES, 2017, 2182 : 195 - 253
  • [25] Martingale Musielak-Orlicz Hardy spaces
    Xie, Guangheng
    Jiao, Yong
    Yang, Dachun
    [J]. SCIENCE CHINA-MATHEMATICS, 2019, 62 (08) : 1567 - 1584
  • [26] Smoothness of the Orlicz norm in Musielak-Orlicz function spaces
    Vigelis, Rui F.
    Cavaleante, Charles C.
    [J]. MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1025 - 1041
  • [27] Martingale Musielak-Orlicz Hardy spaces
    Guangheng Xie
    Yong Jiao
    Dachun Yang
    [J]. Science China Mathematics, 2019, 62 (08) : 1567 - 1584
  • [28] A COMBINATORIAL APPROACH TO MUSIELAK-ORLICZ SPACES
    Prochno, Joscha
    [J]. BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2013, 7 (01): : 132 - 141
  • [29] ISOMETRIES OF MUSIELAK-ORLICZ SPACES EQUIPPED WITH THE ORLICZ NORM
    KAMINSKA, A
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1994, 24 (04) : 1475 - 1486
  • [30] Some classes of sequence spaces defined by a Musielak-Orlicz function
    Sharma, Sunil K.
    [J]. ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2021, 13 (02) : 494 - 505