Accuracy Comparison among Different Machine Learning Techniques for Detecting Malicious Codes

被引:0
|
作者
Narang, Komal [1 ]
机构
[1] Bangkok Univ, Sch Sci & Technol, Multimedia Intelligent Technol Lab BU MIT, Bangkok, Thailand
关键词
D O I
10.1063/1.4942738
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
in this paper, a machine learning based model for malware detection is proposed. It can detect newly released malware i.e. zero day attack by analyzing operation codes on Android operating system. The accuracy of Na ve Bayes, Support Vector Machine (SVM) and Neural Network for detecting malicious code has been compared for the proposed model. In the experiment 400 benign files, 100 system files and 500 malicious files have been used to construct the model. The model yields the best accuracy 88.9% when neural network is used as classifier and achieved 95% and 82.8% accuracy for sensitivity and specificity respectively.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Detecting Malicious URLs using Machine Learning Techniques
    Vanhoenshoven, Frank
    Napoles, Gonzalo
    Falcon, Rafael
    Vanhoof, Keen
    Koppen, Mario
    [J]. PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [2] Comparisons of machine learning techniques for detecting malicious webpages
    Kazemian, H. B.
    Ahmed, S.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (03) : 1166 - 1177
  • [3] A Comparison of Machine Learning Attributes for Detecting Malicious Websites
    Singh, A. K.
    Goyal, Navneet
    [J]. 2019 11TH INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS & NETWORKS (COMSNETS), 2019, : 387 - 393
  • [4] Detecting malicious IoT traffic using Machine Learning techniques
    Jayaraman, Bhuvana
    Thai, Mirnalinee T. H. A. N. G. A. N. A. D. A. R. T. H. A. N. G. A.
    Anand, Anirudh
    Nadar, Sri Sivasubramaniya
    [J]. ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2023, 33 (04): : 47 - 58
  • [5] Detecting Malicious Botnets in IoT Networks Using Machine Learning Techniques
    Asghar, Muhammad Nabeel
    Asif, Muhammad
    Murad, Zara
    Alyahya, Ahmed
    [J]. IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2024, 20 (02):
  • [6] Detecting Malicious Botnets in IoT Networks Using Machine Learning Techniques
    Asghar, Muhammad Nabeel
    Raza, Muhammad Asif
    Murad, Zara
    Alyahya, Ahmed
    [J]. IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2024, 20 (01): : 24 - 35
  • [7] Detecting Malicious Driving with Machine Learning
    Yardy, Kevin
    Almehmadi, Abdulaziz
    El-Khatib, Khalil
    [J]. 2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [8] Machine learning and deep learning techniques for detecting malicious android applications: An empirical analysis
    Parnika Bhat
    Sunny Behal
    Kamlesh Dutta
    [J]. Proceedings of the Indian National Science Academy, 2023, 89 : 429 - 444
  • [9] Machine learning and deep learning techniques for detecting malicious android applications: An empirical analysis
    Bhat, Parnika
    Behal, Sunny
    Dutta, Kamlesh
    [J]. PROCEEDINGS OF THE INDIAN NATIONAL SCIENCE ACADEMY, 2023, 89 (03): : 429 - 444
  • [10] Detecting malicious COVID-19 URLs using machine learning techniques
    Ispahany, Jamil
    Islam, Rafiqul
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2021, : 718 - 723