Machine learning and deep learning techniques for detecting malicious android applications: An empirical analysis

被引:0
|
作者
Bhat, Parnika [1 ,2 ]
Behal, Sunny [1 ,2 ]
Dutta, Kamlesh [1 ,2 ]
机构
[1] NIT, Dept CSE, Hamirpur, India
[2] SBS State Univ, Dept CSE, Ferozepur, Punjab, India
来源
关键词
Android; Deep learning; Malware detection; Machine learning; Static analysis; FEATURE-SELECTION; MALWARE;
D O I
10.1007/s43538-023-00182-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The open system architecture of android makes it vulnerable to a variety of cyberattacks. Cybercriminals use android applications to intrude into the system and steal confidential data. This situation poses a threat to user privacy and integrity of the system. This paper proposes a static analysis approach to detect malicious and benign Android applications using various machine learning and deep learning algorithms. The proposed work has been validated using a bench marked dataset comprising 11,449 benign and malicious Android applications. The proposed approach applies a wrapper-based feature selection method to filter irrelevant features. The results clearly show that the deep learning algorithms of DBN and MLP outperformed machine learning algorithms in detecting malicious Android applications.
引用
收藏
页码:429 / 444
页数:16
相关论文
共 50 条
  • [1] Machine learning and deep learning techniques for detecting malicious android applications: An empirical analysis
    Parnika Bhat
    Sunny Behal
    Kamlesh Dutta
    [J]. Proceedings of the Indian National Science Academy, 2023, 89 : 429 - 444
  • [2] Detecting Malicious URLs using Machine Learning Techniques
    Vanhoenshoven, Frank
    Napoles, Gonzalo
    Falcon, Rafael
    Vanhoof, Keen
    Koppen, Mario
    [J]. PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [3] Comparisons of machine learning techniques for detecting malicious webpages
    Kazemian, H. B.
    Ahmed, S.
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2015, 42 (03) : 1166 - 1177
  • [4] Detecting Malicious Android Game Applications on Third-Party Stores Using Machine Learning
    Sanamontre, Thanaporn
    Visoottiviseth, Vasaka
    Ragkhitwetsagul, Chaiyong
    [J]. ADVANCED INFORMATION NETWORKING AND APPLICATIONS, VOL 4, AINA 2024, 2024, 202 : 238 - 251
  • [5] Detecting malicious IoT traffic using Machine Learning techniques
    Jayaraman, Bhuvana
    Thai, Mirnalinee T. H. A. N. G. A. N. A. D. A. R. T. H. A. N. G. A.
    Anand, Anirudh
    Nadar, Sri Sivasubramaniya
    [J]. ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2023, 33 (04): : 47 - 58
  • [6] Detecting malicious activity in Twitter using deep learning techniques
    Ilias, Loukas
    Roussaki, Ioanna
    [J]. APPLIED SOFT COMPUTING, 2021, 107
  • [7] A MACHINE LEARNING APPROACH TO THE DETECTION AND ANALYSIS OF ANDROID MALICIOUS APPS
    Shibija, K.
    Raymond, Joseph, V
    [J]. 2018 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2018,
  • [8] A Study on Machine Learning and Deep Learning Techniques for Identifying Malicious Web Content
    Sarita Mohanty
    Asha Ambhakar
    [J]. SN Computer Science, 5 (7)
  • [9] Detecting Malicious Driving with Machine Learning
    Yardy, Kevin
    Almehmadi, Abdulaziz
    El-Khatib, Khalil
    [J]. 2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [10] Detecting Malicious Botnets in IoT Networks Using Machine Learning Techniques
    Asghar, Muhammad Nabeel
    Asif, Muhammad
    Murad, Zara
    Alyahya, Ahmed
    [J]. IPSI BGD TRANSACTIONS ON INTERNET RESEARCH, 2024, 20 (02):