STATISTICAL ANALYSIS OF FACTOR MODELS OF HIGH DIMENSION

被引:189
|
作者
Bai, Jushan [1 ]
Li, Kunpeng [2 ,3 ]
机构
[1] Columbia Univ, Dept Econ, New York, NY 10027 USA
[2] Tsinghua Univ, Dept Econ, Sch Econ & Management, Beijing 100084, Peoples R China
[3] Univ Int Business & Econ, Dept Quantitat Econ, Sch Int Trade & Econ, Beijing 100084, Peoples R China
来源
ANNALS OF STATISTICS | 2012年 / 40卷 / 01期
基金
美国国家科学基金会;
关键词
High-dimensional factor models; maximum likelihood estimation; factors; factor loadings; idiosyncratic variances; principal components; ARBITRAGE; ESTIMATORS; NUMBER; RETURN;
D O I
10.1214/11-AOS966
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper considers the maximum likelihood estimation of factor models of high dimension, where the number of variables (N) is comparable with or even greater than the number of observations (T). An inferential theory is developed. We establish not only consistency but also the rate of convergence and the limiting distributions. Five different sets of identification conditions are considered. We show that the distributions of the MLE estimators depend on the identification restrictions. Unlike the principal components approach, the maximum likelihood estimator explicitly allows heteroskedastic-ities, which re jointly estimated with other parameters. Efficiency of MLE relative to the principal components method is also considered.
引用
收藏
页码:436 / 465
页数:30
相关论文
共 50 条
  • [41] Nonlinear factor analysis as a statistical method
    Yalcin, I
    Amemiya, Y
    [J]. STATISTICAL SCIENCE, 2001, 16 (03) : 275 - 294
  • [42] FACTOR MODELS AND VARIABLE SELECTION IN HIGH-DIMENSIONAL REGRESSION ANALYSIS
    Kneip, Alois
    Sarda, Pascal
    [J]. ANNALS OF STATISTICS, 2011, 39 (05): : 2410 - 2447
  • [43] OPTIMAL DISCRIMINANT ANALYSIS IN HIGH-DIMENSIONAL LATENT FACTOR MODELS
    Bing, Xin
    Wegkamp, Marten
    [J]. ANNALS OF STATISTICS, 2023, 51 (03): : 1232 - 1257
  • [44] Quasi maximum likelihood analysis of high dimensional constrained factor models
    Li, Kunpeng
    Li, Qi
    Lu, Lina
    [J]. JOURNAL OF ECONOMETRICS, 2018, 206 (02) : 574 - 612
  • [45] Heuristic Analysis of Genomic Sequence Processing Models for High Efficiency Prediction: A Statistical Perspective
    Durge, Aditi R. R.
    Shrimankar, Deepti D. D.
    Sawarkar, Ankush D. D.
    [J]. CURRENT GENOMICS, 2022, 23 (05) : 299 - 317
  • [46] Statistical shape analysis via principal factor analysis
    Aguirre, Mauricio Reyes
    Linguraru, Marius George
    Marias, Kostas
    Ayache, Nicholas
    Nolte, Lutz-Peter
    Ballester, Miguel Angel Gonzalez
    [J]. 2007 4TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING : MACRO TO NANO, VOLS 1-3, 2007, : 1216 - +
  • [47] Sensitivity analysis based dimension reduction of multiscale models
    Nikishova, Anna
    Comi, Giovanni E.
    Hoekstra, Alfons G.
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2020, 170 : 205 - 220
  • [48] THE DIMENSION OF SUPERPOWER RIVALRY - A DYNAMIC FACTOR-ANALYSIS
    WILLIAMS, JT
    MCGINNIS, MD
    [J]. JOURNAL OF CONFLICT RESOLUTION, 1992, 36 (01) : 86 - 118
  • [49] The new equation for the relief factor in statistical models of water erosion
    Larionov, GA
    Dobrovol'skaya, NG
    Krasnov, SF
    Liu, BY
    [J]. EURASIAN SOIL SCIENCE, 2003, 36 (10) : 1105 - 1113
  • [50] QUANTIFYING STATISTICAL UNCERTAINTY FOR DEPENDENT INPUT MODELS WITH FACTOR STRUCTURE
    Xie, Wei
    Sun, Hongtan
    Li, Cheng
    [J]. 2015 WINTER SIMULATION CONFERENCE (WSC), 2015, : 667 - 678