Identification of novel candidate disease genes from de novo exonic copy number variants

被引:47
|
作者
Gambin, Tomasz [1 ,2 ,3 ]
Yuan, Bo [1 ,4 ]
Bi, Weimin [1 ,4 ]
Liu, Pengfei [1 ,4 ]
Rosenfeld, Jill A. [1 ]
Coban-Akdemir, Zeynep [1 ]
Pursley, Amber N. [1 ]
Nagamani, Sandesh C. S. [1 ]
Marom, Ronit [1 ]
Golla, Sailaja [5 ]
Dengle, Lauren [5 ]
Petrie, Heather G. [6 ]
Matalon, Reuben [7 ,8 ]
Emrick, Lisa [9 ]
Proud, Monica B. [9 ]
Treadwell-Deering, Diane [10 ,11 ]
Chao, Hsiao-Tuan [9 ,11 ,12 ]
Koillinen, Hannele [1 ,3 ]
Brown, Chester [13 ,14 ]
Urraca, Nora [14 ]
Mostafavi, Roya [14 ]
Bernes, Saunder [15 ]
Roeder, Elizabeth R. [1 ,16 ]
Nugent, Kimberly M. [1 ,16 ]
Bader, Patricia I. [17 ]
Bellus, Gary [18 ]
Cummings, Michael [19 ]
Northrup, Hope [20 ]
Ashfaq, Myla [20 ]
Westman, Rachel [21 ]
Wildin, Robert [21 ,22 ]
Beck, Anita E. [23 ,24 ]
Immken, LaDonna [25 ]
Elton, Lindsay [26 ]
Varghese, Shaun [27 ]
Buchanan, Edward [28 ]
Faivre, Laurence [29 ,30 ]
Lefebvre, Mathilde [29 ,30 ]
Schaaf, Christian P. [1 ,12 ]
Walkiewicz, Magdalena [1 ,4 ]
Yang, Yaping [1 ,4 ]
Kang, Sung-Hae L. [1 ,4 ]
Lalani, Seema R. [1 ,4 ,11 ]
Bacino, Carlos A. [1 ,4 ,11 ]
Beaudet, Arthur L. [1 ,4 ,11 ]
Breman, Amy M. [1 ,4 ]
Smith, Janice L. [1 ,4 ]
Cheung, Sau Wai [1 ,4 ]
Lupski, James R. [1 ,11 ,31 ]
Patel, Ankita [1 ,4 ]
机构
[1] Baylor Coll Med, Dept Mol & Human Genet, 1 Baylor Plaza, Houston, TX 77030 USA
[2] Warsaw Univ Technol, Inst Comp Sci, PL-00665 Warsaw, Poland
[3] Inst Mother & Child Hlth, Dept Med Genet, PL-01211 Warsaw, Poland
[4] Baylor Genet, Houston, TX 77021 USA
[5] Univ Texas Southwestern Med Ctr, Div Pediat Neurol, Dallas, TX 75390 USA
[6] Childrens Hlth Dallas, Dallas, TX 75235 USA
[7] Univ Texas Med Branch, Dept Pediat, Galveston, TX 77555 USA
[8] Univ Texas Med Branch, Dept Biochem & Mol Biol, Galveston, TX 77555 USA
[9] Baylor Coll Med, Sect Child Neurol, Dept Pediat, Houston, TX 77030 USA
[10] Baylor Coll Med, Child & Adolescent Psychiat Div, Dept Psychiat & Behav Sci, Houston, TX 77030 USA
[11] Baylor Coll Med, Dept Pediat, Houston, TX 77030 USA
[12] Texas Childrens Hosp, Jan & Dan Duncan Neurol Res Inst, Houston, TX 77030 USA
[13] Univ Tennessee, Hlth Sci Ctr, Dept Pediat, Genet Div, Memphis, TN 38105 USA
[14] Le Bonheur Childrens Hosp, Memphis, TN 38103 USA
[15] Phoenix Childrens Hosp, Phoenix, AZ 85016 USA
[16] Baylor Coll Med, Dept Pediat, San Antonio, TX 78207 USA
[17] Northeast Indiana Genet Counseling Ctr, Wayne, NJ 46804 USA
[18] Univ Colorado, Sch Med, Dept Pediat, Sect Clin Genet & Metab, Aurora, CO 80045 USA
[19] Erie Cty Med Ctr & Labs, Dept Psychiat, Buffalo, NY 14215 USA
[20] Univ Texas Hlth Sci Ctr Houston, McGovern Med Sch, Dept Pediat, Div Med Genet, Houston, TX 77030 USA
[21] St Lukes Childrens Hosp, Boise, ID 83702 USA
[22] NHGRI, Bethesda, MD 20892 USA
[23] Seattle Childrens Hosp, Seattle, WA 98105 USA
[24] Univ Washington, Div Genet Med, Dept Pediat, Seattle, WA 98195 USA
[25] Dell Childrens Med Ctr, Austin, TX 78723 USA
[26] Child Neurol Consultants Austin, Austin, TX 78731 USA
[27] Childrens Mem Hermann Hosp, THINK Neurol Kids, The Woodlands, TX 77380 USA
[28] Baylor Coll Med, Div Plast Surg, Houston, TX 77030 USA
[29] CHU Dijon, Ctr Genet, Dijon, France
[30] CHU Dijon, Ctr Reference Anomalies Developpement & Syndromes, FHU TRANSLAD, Dijon, France
[31] Texas Childrens Hosp, Houston, TX 77030 USA
来源
GENOME MEDICINE | 2017年 / 9卷
基金
美国国家卫生研究院;
关键词
Exon targeted array CGH; Intragenic copy number variants; CNVs; de novo variants; SYNDROMIC DEVELOPMENTAL DELAY; AUTISM SPECTRUM DISORDERS; CLINICAL DIAGNOSTIC-TEST; INTELLECTUAL DISABILITY; ARRAY CGH; CHROMOSOMAL MICROARRAY; COGNITIVE PHENOTYPES; TRUNCATING MUTATIONS; GENOMIC DISORDERS; FUNCTIONAL IMPACT;
D O I
10.1186/s13073-017-0472-7
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Exon-targeted microarrays can detect small (<1000 bp) intragenic copy number variants (CNVs), including those that affect only a single exon. This genome-wide high-sensitivity approach increases the molecular diagnosis for conditions with known disease-associated genes, enables better genotype-phenotype correlations, and facilitates variant allele detection allowing novel disease gene discovery. Methods: We retrospectively analyzed data from 63,127 patients referred for clinical chromosomal microarray analysis (CMA) at Baylor Genetics laboratories, including 46,755 individuals tested using exon-targeted arrays, from 2007 to 2017. Small CNVs harboring a single gene or two to five non-disease-associated genes were identified; the genes involved were evaluated for a potential disease association. Results: In this clinical population, among rare CNVs involving any single gene reported in 7200 patients (11%), we identified 145 de novo autosomal CNVs (117 losses and 28 intragenic gains), 257 X-linked deletion CNVs in males, and 1049 inherited autosomal CNVs (878 losses and 171 intragenic gains); 111 known disease genes were potentially disrupted by de novo autosomal or X-linked (in males) single-gene CNVs. Ninety-one genes, either recently proposed as candidate disease genes or not yet associated with diseases, were disrupted by 147 singlegene CNVs, including 37 de novo deletions and ten de novo intragenic duplications on autosomes and 100 X-linked CNVs in males. Clinical features in individuals with de novo or X-linked CNVs encompassing at most five genes (224 bp to 1.6 Mb in size) were compared to those in individuals with larger-sized deletions (up to 5 Mb in size) in the internal CMA database or loss-of-function single nucleotide variants (SNVs) detected by clinical or research whole-exome sequencing (WES). This enabled the identification of recently published genes (BPTF, NONO, PSMD12, TANGO2, and TRIP12), novel candidate disease genes (ARGLU1 and STK3), and further confirmation of disease association for two recently proposed disease genes (MEIS2 and PTCHD1). Notably, exon-targeted CMA detected several pathogenic single-exon CNVs missed by clinical WES analyses. Conclusions: Together, these data document the efficacy of exon-targeted CMA for detection of genic and exonic CNVs, complementing and extending WES in clinical diagnostics, and the potential for discovery of novel disease genes by genome-wide assay.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Fast detection of de novo copy number variants from SNP arrays for case-parent trios
    Robert B Scharpf
    Terri H Beaty
    Holger Schwender
    Samuel G Younkin
    Alan F Scott
    Ingo Ruczinski
    [J]. BMC Bioinformatics, 13
  • [42] Fast detection of de novo copy number variants from SNP arrays for case-parent trios
    Scharpf, Robert B.
    Beaty, Terri H.
    Schwender, Holger
    Younkin, Samuel G.
    Scott, Alan F.
    Ruczinski, Ingo
    [J]. BMC BIOINFORMATICS, 2012, 13
  • [43] RECURRENT GENOMIC COPY NUMBER VARIANTS IMPLICATE NEW CANDIDATE GENES FOR EARLY ONSET BICUSPID AORTIC VALVE DISEASE
    Prakash, Siddharth K.
    Yetman, Angela
    Bissell, Malenka M.
    Kim, Yuli Y.
    Michelena, Hector
    Hui, Dawn S.
    Caffarelli, Anthony
    Andreassi, Maria G.
    Foffa, Ilenia
    Jennings, Jacqueline
    Citro, Rodolfo
    Guo, Dongchuan
    De Marco, Margot
    Tretter, Justin T.
    Body, Simon C.
    [J]. JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 620 - 620
  • [44] Comprehensive genomic copy number and sequence analysis of 28 chromosome 5q31.2 candidate genes in de novo MDS
    Graubert, Timothy A.
    Payton, M. A.
    Monahan, R. S.
    Shao, J.
    Frater, J. L.
    Walgren, R. A.
    Kasai, Y.
    Walter, Matthew J.
    [J]. BLOOD, 2007, 110 (11) : 42A - 43A
  • [45] Identification of copy number variants from exome sequence data
    Samarakoon, Pubudu Saneth
    Sorte, Hanne Sormo
    Kristiansen, Bjorn Evert
    Skodje, Tove
    Sheng, Ying
    Tjonnfjord, Geir E.
    Stadheim, Barbro
    Stray-Pedersen, Asbjorg
    Rodningen, Olaug Kristin
    Lyle, Robert
    [J]. BMC GENOMICS, 2014, 15
  • [46] Examination of Candidate Exonic Variants for Association to Alzheimer Disease in the Amish
    D'Aoust, Laura N.
    Cummings, Anna C.
    Laux, Renee
    Fuzzell, Denise
    Caywood, Laura
    Reinhart-Mercer, Lori
    Scott, William K.
    Pericak-Vance, Margaret A.
    Haines, Jonathan L.
    [J]. PLOS ONE, 2015, 10 (02):
  • [47] Identification of copy number variants from exome sequence data
    Pubudu Saneth Samarakoon
    Hanne Sørmo Sorte
    Bjørn Evert Kristiansen
    Tove Skodje
    Ying Sheng
    Geir E Tjønnfjord
    Barbro Stadheim
    Asbjørg Stray-Pedersen
    Olaug Kristin Rødningen
    Robert Lyle
    [J]. BMC Genomics, 15
  • [48] Identification of exonic copy number variations in dystrophin gene using MLPA
    Rusu, Cristina
    Sireteanu, Adriana
    Butnariu, Lacramioara
    Panzaru, Monica
    Braha, Elena
    Mihaila, Doina
    Popescu, Roxana
    [J]. REVISTA ROMANA DE MEDICINA DE LABORATOR, 2014, 22 (04): : 419 - 426
  • [49] Rare Genomic Copy Number Variants Implicate New Candidate Genes for Bicuspid Aortic Valve
    Carlisle, Steven G.
    Albasha, Hasan
    Michelena, Hector I.
    Sabate-Rotes, Anna
    Bianco, Lisa
    DeBacker, Julie
    Mosquera, Laura Muino
    Yetman, Angela T.
    Bissell, Malenka
    Andreassi, Maria Grazia
    Foffa, Ilenia
    Hui, Dawn
    Caffarelli, Anthony D.
    Kim, Yuli Y.
    Guo, Dongchuan
    Citro, Rodolfo
    De Marco, Margot
    Tretter, Justin
    Hanchard, Neil A.
    [J]. CIRCULATION, 2022, 146
  • [50] A brief report: de novo copy number variants in children with attention deficit hyperactivity disorder
    Joanna Martin
    Grace Hosking
    Megan Wadon
    Sharifah Shameem Agha
    Kate Langley
    Elliott Rees
    Michael J. Owen
    Michael O’Donovan
    George Kirov
    Anita Thapar
    [J]. Translational Psychiatry, 10