Harmonized Landsat/Sentinel-2 Products for Land Monitoring

被引:0
|
作者
Masek, Jeffrey [1 ]
Ju, Junchang [2 ]
Roger, Jean-Claude [3 ]
Skakun, Sergii [3 ]
Claverie, Martin [4 ]
Dungan, Jennifer [5 ]
机构
[1] NASA, Biospher Sci Lab, GSFC, Greenbelt, MD 20771 USA
[2] Interdisciplinary Univ Maryland, Earth Syst Sci, College Pk, MD USA
[3] Univ Maryland, Dept Geog Sci, Line 4, College Pk, MD 20742 USA
[4] Catholic Univ Louvain, Earth & Life Inst, Louvain, Belgium
[5] NASA, Earth Sci Div, Ames Res Ctr, Moffitt Field, CA USA
关键词
land remote sensing; Landsat; Sentinel-2; atmospheric correction; CLOUD SHADOW; REFLECTANCE;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The Harmonized Landsat-8 and Sentinel-2 (HLS) project is a NASA initiative aiming to produce a seamless, harmonized surface reflectance record from the Operational Land Imager (OLI) and Multi-Spectral Instrument (MSI) aboard Landsat-8 and Sentinel-2 remote sensing satellites, respectively. The HLS products are based on a set of algorithms to obtain seamless products from both sensors (OLI and MSI): atmospheric correction, cloud and cloud-shadow masking, geographic co-registration and common gridding, bidirectional reflectance distribution function normalization and bandpass adjustment. As of version 1.3, the HLS v1.3 data set covers 9.12 million km2 and spans from first Landsat-8 data (2013) to present. HLS products provide near-daily surface reflectance information with a common geometric framework, and are suitable for a variety of agricultural and vegetation monitoring tasks, including analysis of crop type, condition, and phenology.
引用
收藏
页码:8163 / 8165
页数:3
相关论文
共 50 条
  • [31] Sentinel-2 for Agricultural Monitoring
    Gascon, Ferran
    [J]. IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 8166 - 8168
  • [32] GPP of a Chinese Savanna Ecosystem during Different Phenological Phases Simulated from Harmonized Landsat and Sentinel-2 Data
    Zhang, Xiang
    Xie, Shuai
    Zhang, Yiping
    Song, Qinghai
    Filippa, Gianluca
    Qi, Dehua
    [J]. REMOTE SENSING, 2024, 16 (18)
  • [33] Deep learning-based fusion of Landsat-8 and Sentinel-2 images for a harmonized surface reflectance product
    Shao, Zhenfeng
    Cai, Jiajun
    Fu, Peng
    Hu, Leiqiu
    Liu, Tao
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 235
  • [34] Mapping Agricultural Intensification in the Brazilian Savanna: A Machine Learning Approach Using Harmonized Data from Landsat Sentinel-2
    Bolfe, Edson Luis
    Parreiras, Taya Cristo
    da Silva, Lucas Augusto Pereira
    Sano, Edson Eyji
    Bettiol, Giovana Maranhao
    Victoria, Daniel de Castro
    Sanches, Ieda Del'Arco
    Vicente, Luiz Eduardo
    [J]. ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2023, 12 (07)
  • [35] Sentinel-2/Landsat-8 product consistency and implications for monitoring aquatic systems
    Pahlevan, Nima
    Chittimalli, Sandeep K.
    Balasubramanian, Sundarabalan V.
    Vellucci, Vincenzo
    [J]. REMOTE SENSING OF ENVIRONMENT, 2019, 220 : 19 - 29
  • [36] A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data
    Chen, Yunping
    Hu, Jie
    Cai, Zhiwen
    Yang, Jingya
    Zhou, Wei
    Hu, Qiong
    Wang, Cong
    You, Liangzhi
    Xu, Baodong
    [J]. JOURNAL OF INTEGRATIVE AGRICULTURE, 2024, 23 (04) : 1164 - 1178
  • [37] A phenology-based vegetation index for improving ratoon rice mapping using harmonized Landsat and Sentinel-2 data
    Yunping Chen
    Jie Hu
    Zhiwen Cai
    Jingya Yang
    Wei Zhou
    Qiong Hu
    Cong Wang
    Liangzhi You
    Baodong Xu
    [J]. Journal of Integrative Agriculture, 2024, 23 (04) : 1164 - 1178
  • [38] Monitoring standing herbaceous biomass and thresholds in semiarid rangelands from harmonized Landsat 8 and Sentinel-2 imagery to support within-season adaptive management
    Kearney, Sean P.
    Porensky, Lauren M.
    Augustine, David J.
    Gaffney, Rowan
    Derner, Justin D.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2022, 271
  • [39] THE RESEARCH OF THE AGRICULTURAL LAND CONDITION BASED ON LANDSAT 8 AND SENTINEL-2 SATELLITES DATA MERGERS
    Kolodiy, Pavlo
    Pidlypna, Maryna
    [J]. GEOGRAPHIC INFORMATION SYSTEMS CONFERENCE AND EXHIBITION (GIS ODYSSEY 2017), 2017, : 191 - 195
  • [40] Co-registration accuracy between Landsat-8 and Sentinel-2 orthorectified products
    Rengarajan, Rajagopalan
    Choate, Michael
    Hasan, Md Nahid
    Denevan, Alex
    [J]. REMOTE SENSING OF ENVIRONMENT, 2024, 301