Deep Learning based Phaseless SAR without Born Approximation

被引:0
|
作者
Kazemi, Samia [1 ]
Yazici, Birsen [1 ]
机构
[1] Rensselaer Polytech Inst, Dept Elect Comp & Syst Engn, 110 8th St, Troy, NY 12180 USA
基金
美国国家科学基金会;
关键词
RETRIEVAL; CONVERGENCE; RECOVERY;
D O I
10.1109/RadarConf2147009.2021.9454985
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a phase retrieval approach from intensity measurements using a Deep Learning (DL) based Wirtinger Flow (WF) algorithm for the case where the measurement model is non-linear, and this non-linearity depends on the unknown signal. In the context of synthetic aperture radar (SAR), this is relevant to the image reconstruction problem for the scenario where the Born approximation is no longer valid which results in multi-scattering effect within the extended target being imaged. Since we are adopting WF for DL based imaging, the underlying optimization problem is non-convex. However, unlike the WF algorithm, the unknown image is estimated from the measurement intensities in a learned encoding space with the goal of achieving effective reconstruction performance. The overall DL network is composed of an encoding network for determining a suitable initial value in the transformed space, a recurrent neural network (RNN) that models the steps of a gradient descent algorithm for an optimization problem, and a decoding network that can incorporate the generative image prior and transforms the encoded estimation from the RNN output to the original image space. Numerical results are included to verify feasibility of the proposed approach.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Deep Learning-Based Strategies and Optimization Methods for SAR ATR
    Yehia, Abdelrahman
    Sanad, Ibrahim Sh.
    Helmy, Ashraf K.
    Hanafy, Mohamed E.
    2024 14TH INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING, ICEENG 2024, 2024, : 148 - 150
  • [32] deSpeckNet: Generalizing Deep Learning-Based SAR Image Despeckling
    Mullissa, Adugna G.
    Marcos, Diego
    Tuia, Devis
    Herold, Martin
    Reiche, Johannes
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Ship Target Detection Based on CFAR and Deep Learning SAR Image
    Deng, Hua
    Pi, Dechang
    Zhao, Yue
    JOURNAL OF COASTAL RESEARCH, 2019, : 161 - 164
  • [34] SAR Automatic Target Recognition Based on Multiview Deep Learning Framework
    Pei, Jifang
    Huang, Yulin
    Huo, Weibo
    Zhang, Yin
    Yang, Jianyu
    Yeo, Tat-Soon
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (04): : 2196 - 2210
  • [35] Detection and Tracking of Moving Target Based on Deep Learning for Video SAR
    Lin, Jie
    Cheng, Li
    Wu, Fuwei
    Yang, Yuhao
    Li, Pin
    Jin, Lin
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [36] AFnet and PAFnet: Fast and Accurate SAR Autofocus Based on Deep Learning
    Liu, Zhi
    Yang, Shuyuan
    Gao, Quanwei
    Feng, Zhixi
    Wang, Min
    Jiao, Licheng
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [37] Generalization in deep learning-based aircraft classification for SAR imagery
    Pulella, Andrea
    Sica, Francescopaolo
    Lopez, Carlos Villamil
    Anglberger, Harald
    Haensch, Ronny
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 218 : 312 - 323
  • [38] Noisy SAR Image Classification Based on Fusion Filtering and Deep Learning
    Xu, Qiang
    Li, Wei
    Xu, Zehua
    Zheng, Jiayi
    PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 1928 - 1932
  • [39] Deep Learning for SAR Image Classification
    Anas, Hasni
    Majdoulayne, Hanifi
    Chaimae, Anibou
    Nabil, Saidi Mohamed
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 1, 2020, 1037 : 890 - 898
  • [40] Deep learning based distorted Born iterative method for improving microwave imaging
    Magdum, Amit D.
    Beerappa, Harisha Shimoga
    Erramshetty, Mallikarjun
    FREQUENZ, 2024, 78 (1-2) : 1 - 8