Synthesis and structural studies of Mg doped LiNi0.5Mn0.5O2 cathode materials for lithium-ion batteries

被引:2
|
作者
Murali, N. [1 ,2 ]
Margarette, S. J. [2 ]
Sailaja, J. Madhuri [2 ]
Rao, V. Kondala [2 ]
Himakar, P. [2 ]
Babu, B. Kishore [3 ]
Veeraiah, V. [2 ]
机构
[1] Andhra Univ, DST PURSE Programme, Adv Analyt Lab, Visakhapatnam, Andhra Pradesh, India
[2] Andhra Univ, Dept Phys, Visakhapatnam, Andhra Pradesh, India
[3] Andhra Univ, Dept Engn Chem, AUCE A, Visakhapatnam 530003, Andhra Pradesh, India
关键词
X-ray diffraction; FESEM; FT-IR; PERFORMANCE;
D O I
10.1088/1757-899X/310/1/012126
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Layered Mg doped LiNi0.5Mn0.5O2 materials have been synthesized by sol-gel method. The physical properties of these materials were examined by XRD, FESEM and FT-IR studies. From XRD patterns, the phase formation of alpha-NaFeO2 layered structure with R (3) over barm space group is confirmed. The surface morphology of the synthesized materials has been examined by FESEM analysis in which the average particle size is found to be about 2 - 2.5 mu m. These materials show some changes in the local ion environment, as examined by FT-IR studies.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Porous 0.2Li2MnO3•0.8LiNi0.5Mn0.5O2 nanorods as cathode materials for lithium-ion batteries
    Yang, Jingang
    Cheng, Fangyi
    Zhang, Xiaolong
    Gao, Haiyan
    Tao, Zhanliang
    Chen, Jun
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (06) : 1636 - 1640
  • [42] Regenerating of LiNi0.5Co0.2Mn0.3O2 cathode materials from spent lithium-ion batteries
    Li, Jian
    Hu, Leshan
    Zhou, Hongming
    Wang, Lihua
    Zhai, Bingkun
    Yang, Shengliang
    Meng, Pengyu
    Hu, Rong
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (20) : 17661 - 17669
  • [43] Regenerating of LiNi0.5Co0.2Mn0.3O2 cathode materials from spent lithium-ion batteries
    Jian Li
    Leshan Hu
    Hongming Zhou
    Lihua Wang
    Bingkun Zhai
    Shengliang Yang
    Pengyu Meng
    Rong Hu
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 17661 - 17669
  • [44] Effects of Si doping on structural and electrochemical performance of LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries
    Zong, Bo
    Deng, Ziyao
    Yan, Shuhao
    Lang, Yaqiang
    Gong, Jiajia
    Guo, Jianling
    Wang, Li
    Liang, Guangchuan
    POWDER TECHNOLOGY, 2020, 364 : 725 - 737
  • [45] Improved electrochemical performance of doped-LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
    Kim, Hyun-Ju
    Jin, Bong-Soo
    Doh, Chil-Hoon
    Bae, Dong-Sik
    Kim, Hyun-Soo
    ELECTRONIC MATERIALS LETTERS, 2013, 9 (06) : 851 - 854
  • [46] Improved electrochemical performance of doped-LiNi0.5Mn1.5O4 cathode material for lithium-ion batteries
    Hyun-Ju Kim
    Bong-Soo Jin
    Chil-Hoon Doh
    Dong-Sik Bae
    Hyun-Soo Kim
    Electronic Materials Letters, 2013, 9 : 851 - 854
  • [47] Structural and electrochemical properties of LiNi0.5Mn0.5-xAlxO2 (x=0, 0.02, 0.05, 0.08, and 0.1) cathode materials for lithium-ion batteries
    Zhang, Bin
    Chen, Gang
    Liang, Yilin
    Xu, Ping
    SOLID STATE IONICS, 2009, 180 (4-5) : 398 - 404
  • [48] Structural and electrochemical characteristics of Al2O3-modified LiNi0.5Mn1.5O4 cathode materials for lithium-ion batteries
    Chang, Qian
    Wei, Aijia
    Li, Wen
    Bai, Xue
    Zhang, Lihui
    He, Rui
    Liu, Zhenfa
    CERAMICS INTERNATIONAL, 2019, 45 (04) : 5100 - 5110
  • [49] Ba-doping to Improve the Cycling Stability of LiNi0.5Mn0.5O2 Cathode Materials for Batteries Operating at High Voltage
    Liu, Zeyu
    Zheng, Hong
    Tan, Li
    Yuan, Silan
    Yin, Haiyan
    ENERGY TECHNOLOGY, 2018, 6 (07) : 1302 - 1309
  • [50] Sb doping and Sb2O3 coating collaboration to improve the electrochemical performance of LiNi0.5Mn0.5O2 cathode material for lithium ion batteries
    Hu, Guorong
    Shi, You
    Fan, Ju
    Cao, Yanbing
    Peng, Zhongdong
    Zhang, Yinjia
    Zhu, Fangjun
    Sun, Qian
    Xue, Zhichen
    Liu, Yanhua
    Du, Ke
    ELECTROCHIMICA ACTA, 2020, 364 (364)