Maximum Power Point Tracking for Photovoltaic Systems Using Adaptive Extremum Seeking Control

被引:0
|
作者
Li, Xiao [1 ]
Li, Yaoyu [2 ]
Seem, John E. [3 ]
Lei, Peng [1 ]
机构
[1] Univ Wisconsin, 3200 N Cramer St, Milwaukee, WI 53211 USA
[2] Univ Texas Dallas, Richardson, TX 75083 USA
[3] Johnson Controls Inc, Building Efficiency Res, Milwaukee, WI 53209 USA
关键词
NONLINEAR DYNAMIC-SYSTEMS;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To maintain the maximum achievable efficiency for the photovoltaic (PV) systems, it is crucial to achieve the maximum power point tracking (MPPT) operation for realistic illumination conditions. This paper presents the application of the adaptive extremum seeking control (AESC) scheme to the PV MPPT problem. A state-space model is derived for the PV system with buck converter. The AESC is used to maximize the power output by tuning the duty ratio of the pulse-width modulator (PWM) of the DC-DC buck converter. To address the nonlinear PV characteristics, the radial basis function (RBF) neural network is used to approximate the unknown nonlinear I-V curve. The convergence of the system to an adjustable neighborhood of the optimum is guaranteed by utilizing a Lyapunov-based adaptive control method. The performance of the controller is verified through simulations.
引用
收藏
页码:1503 / 1508
页数:6
相关论文
共 50 条
  • [41] A proposed maximum power point tracking by using adaptive fuzzy logic controller for photovoltaic systems
    Gheibi, A.
    Mohammadi, S. M. A.
    Farsangi, M. Maghfoori
    SCIENTIA IRANICA, 2016, 23 (03) : 1272 - 1281
  • [42] A direct adaptive neural control for maximum power point tracking of photovoltaic system
    Dounis, Anastasios I.
    Kofinas, P.
    Papadakis, G.
    Alafodimos, C.
    SOLAR ENERGY, 2015, 115 : 145 - 165
  • [43] Multivariable Sliding-mode Extremum Seeking Control with Application to Alternator Maximum Power Point Tracking
    Tolue, Shirin Fartash
    Moallem, Mehrdad
    PROCEEDINGS OF THE IECON 2016 - 42ND ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2016, : 229 - 234
  • [44] Adaptive output-feedback control design for maximum power point tracking of uncertain photovoltaic systems
    Stitou, Mohamed
    El Fadili, Abderrahim
    Chaoui, Fatima Zahra
    Giri, Fouad
    IFAC JOURNAL OF SYSTEMS AND CONTROL, 2022, 21
  • [45] Adaptive Observer-based Control Strategy for Maximum Power Point Tracking of Uncertain Photovoltaic Systems
    Stitou, Mohamed
    El Fadili, Abderrahim
    Chaoui, Fatima Zahra
    Giri, Fouad
    IFAC PAPERSONLINE, 2019, 52 (29): : 160 - 167
  • [46] Adaptive robust maximum power point tracking control for perturbed photovoltaic systems with output voltage estimation
    Koofigar, Hamid Reza
    ISA TRANSACTIONS, 2016, 60 : 285 - 293
  • [47] Maximum power point tracking using unsupervised learning for photovoltaic power systems
    Guessoum, Djamel
    Takruri, Maen
    Badawi, Sufian A.
    Farhat, Maissa
    ElBadawi, Isam
    INTERNATIONAL JOURNAL OF SUSTAINABLE ENGINEERING, 2024, 17 (01) : 38 - 53
  • [48] Maximum Power Point Tracking of Photovoltaic Systems using Backstepping Controller
    Rafika, El Idrissi
    Abbou, Ahmed
    Rhaili, Salahddine
    Salimi, Mahadi
    2017 INTERNATIONAL CONFERENCE ON ENGINEERING AND TECHNOLOGY (ICET), 2017,
  • [49] Maximum power point tracking in photovoltaic system by using adaptive fuzzy arithmetic
    Faculty of Automation, Guangdong University of Technology, Guangzhou 510006, China
    不详
    不详
    Taiyangneng Xuebao, 2008, 6 (657-661):
  • [50] Maximum Power Point Tracking of Photovoltaic System Using Adaptive Fuzzy Controller
    Refaat, Mohamed M.
    Atia, Yousry
    Sayed, M. M.
    Fattah, Hossam A. Abdel
    2017 INTL CONF ON ADVANCED CONTROL CIRCUITS SYSTEMS (ACCS) SYSTEMS & 2017 INTL CONF ON NEW PARADIGMS IN ELECTRONICS & INFORMATION TECHNOLOGY (PEIT), 2017, : 127 - 131