EIGENVALUES OF SOME p(x)-BIHARMONIC PROBLEMS UNDER NEUMANN BOUNDARY CONDITIONS

被引:4
|
作者
Hsini, Mounir [1 ]
Irzi, Nawal [1 ]
Kefi, Khaled [1 ,2 ]
机构
[1] Univ Tunis, Fac Sci, Math Dept, Tunis, Tunisia
[2] Northern Border Univ, Community Coll Rafha, Ar Ar, Saudi Arabia
关键词
p(x)-biharmonic operator; Ekeland's variational principle; generalized Sobolev spaces; weak solution; VARIABLE EXPONENT; EMBEDDING-THEOREMS; ELLIPTIC-EQUATIONS; INDEFINITE WEIGHT; EXISTENCE; OPERATOR; SPECTRUM; SPACES;
D O I
10.1216/RMJ-2018-48-8-2543
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the following p(x)-biharmonic problem in Sobolev spaces with variable exponents {Delta(2)(p(x)) u = lambda (partial derivative F(x,u)/partial derivative u) x is an element of ohm, partial derivative u/partial derivative n = 0 x is an element of partial derivative ohm, partial derivative(|Delta u|(p(x)-2)Delta u)/partial derivative n = a(x)|u|(p(x)-2)u x is an element of partial derivative ohm. By means of the variational approach and Ekeland's principle, we establish that the above problem admits a nontrivial weak solution under appropriate conditions.
引用
收藏
页码:2543 / 2558
页数:16
相关论文
共 50 条
  • [1] Eigenvalues of the p(x)-biharmonic operator with indefinite weight under Neumann boundary conditions
    Taarabti, S.
    El Allali, Z.
    Ben Haddouch, K.
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2018, 36 (01): : 195 - 213
  • [2] Existence of solutions for a p(x)-biharmonic problem under Neumann boundary conditions
    Hsini, Mounir
    Irzi, Nawal
    Kefi, Khaled
    [J]. APPLICABLE ANALYSIS, 2021, 100 (10) : 2188 - 2199
  • [3] On the eigenvalues of the biharmonic operator with Neumann boundary conditions on a thin set
    Ferraresso, Francesco
    Provenzano, Luigi
    [J]. BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (03) : 1154 - 1177
  • [4] Existence and Multiplicity of Solutions for a p(x)-biharmonic Problem with Neumann Boundary Conditions
    El Amrouss, Abdel Rachid
    Moradi, Fouzia
    Moussaoui, Mimoun
    [J]. BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [5] Eigenvalues of the p(x)-Laplacian Neumann problems
    Fan, Xianling
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 67 (10) : 2982 - 2992
  • [6] Eigenvalues of -Δp - Δq Under Neumann Boundary Condition
    Mihailescu, Mihai
    Morosanu, Gheorghe
    [J]. CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2016, 59 (03): : 606 - 616
  • [7] Eigenvalues for a Neumann Boundary Problem Involving the P(x)-Laplacian
    Miao, Qing
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [8] SOLVABILITY OF SOME NEUMANN-TYPE BOUNDARY VALUE PROBLEMS FOR BIHARMONIC EQUATIONS
    Karachik, Valery
    Turmetov, Batirkhan
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,
  • [9] p(x)-biharmonic problem with Navier boundary conditions
    Hammou, Mustapha Ait
    [J]. RIVISTA DI MATEMATICA DELLA UNIVERSITA DI PARMA, 2023, 14 (01): : 33 - 44
  • [10] EIGENVALUES OF THE LAPLACIAN WITH NEUMANN BOUNDARY-CONDITIONS
    GOTTLIEB, HPW
    [J]. JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES B-APPLIED MATHEMATICS, 1985, 26 (JAN): : 293 - 309