Eigenvalues of the p(x)-Laplacian Neumann problems

被引:48
|
作者
Fan, Xianling [1 ]
机构
[1] Lanzhou Univ, Dept Math, Lanzhou 730000, Peoples R China
基金
中国国家自然科学基金;
关键词
p(x)-Laplacian; Neumann problem; eigenvalue; variable exponent sobolev space; Ljusternik-Schnirelman principle;
D O I
10.1016/j.na.2006.09.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the eigenvalues of the p(x)-Laplacian operator with zero Neumann boundary condition on a bounded domain, where p(x) is a continuous function defined on the domain with p(x) > 1. We show that, similarly to the p-Laplacian case, the smallest eigenvalue of the problem is 0 and it is simple, and the supremum of all the eigenvalues is infinity, however, unlike the p-Laplacian case, for very general variable exponent p(x), the first eigenvalue is not isolated, that is, the infimum of all positive eigenvalues of the problem is 0. We also study some properties of the set of functions having p(x)-average value zero. (C) 2006 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2982 / 2992
页数:11
相关论文
共 50 条
  • [1] Eigenvalues for a Neumann Boundary Problem Involving the P(x)-Laplacian
    Miao, Qing
    [J]. ADVANCES IN MATHEMATICAL PHYSICS, 2015, 2015
  • [2] On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian
    Guiro, Aboudramane
    Nyanquini, Ismael
    Ouaro, Stanislas
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2011,
  • [3] On the solvability of discrete nonlinear Neumann problems involving the p(x)-Laplacian
    Aboudramane Guiro
    Ismael Nyanquini
    Stanislas Ouaro
    [J]. Advances in Difference Equations, 2011
  • [4] Existence and multiplicity results for some p(x)-Laplacian Neumann problems
    Bendahmane, M.
    Chrif, M.
    El Manouni, S.
    [J]. RECENT DEVELOPMENTS IN NONLINEAR ANALYSIS, 2010, : 205 - +
  • [5] Neumann fractional p-Laplacian: Eigenvalues and existence results
    Mugnai, Dimitri
    Lippi, Edoardo Proietti
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 188 : 455 - 474
  • [6] EIGENVALUES OF SOME p(x)-BIHARMONIC PROBLEMS UNDER NEUMANN BOUNDARY CONDITIONS
    Hsini, Mounir
    Irzi, Nawal
    Kefi, Khaled
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2018, 48 (08) : 2543 - 2558
  • [7] Periodic and Neumann problems for discrete p(.)-Laplacian
    Bereanu, Cristian
    Jebelean, Petru
    Serban, Calin
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 399 (01) : 75 - 87
  • [8] Multiple Solutions for Nonhomogeneous Neumann Differential Inclusion Problems by the p(x)-Laplacian
    Zhou, Qing-Mei
    [J]. SCIENTIFIC WORLD JOURNAL, 2013,
  • [9] Existence of solutions for p(x)-Laplacian nonhomogeneous Neumann problems with indefinite weight
    Qian, Chenyin
    Shen, Zifei
    Yang, Minbo
    [J]. NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (01) : 446 - 458
  • [10] The Existence and Multiplicity of Solutions for p(x)-Laplacian-Like Neumann Problems
    Chu, Changmu
    Tang, Ying
    [J]. JOURNAL OF FUNCTION SPACES, 2023, 2023