Ehrenfest's Theorem Revisited

被引:0
|
作者
Arodz, Henryk [1 ]
机构
[1] Jagiellonian Univ, Marian Smoluchowski Inst Phys, Krakow, Poland
关键词
Ehrenfest's theorem; wave packets; quantum vs. classical world; CLASSICAL LIMIT;
D O I
暂无
中图分类号
N09 [自然科学史]; B [哲学、宗教];
学科分类号
01 ; 0101 ; 010108 ; 060207 ; 060305 ; 0712 ;
摘要
Historically, Ehrenfest's theorem (1927) is the first one which shows that classical physics can emerge from quantum physics as a kind of approximation. We recall the theorem in its original form, and we highlight its generalizations to the relativistic Dirac particle and to a particle with spin and izospin. We argue that apparent classicality of the macroscopic world can probably be explained within the framework of standard quantum mechanics.
引用
收藏
页码:73 / 94
页数:22
相关论文
共 50 条
  • [31] Stoilow's theorem revisited
    Luisto, Rami
    Pankka, Pekka
    [J]. EXPOSITIONES MATHEMATICAE, 2020, 38 (03) : 303 - 318
  • [32] Tanaka's theorem revisited
    Bahrami, Saeideh
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2020, 59 (7-8) : 865 - 877
  • [33] Funayama's theorem revisited
    Bezhanishvili, Guram
    Gabelaia, David
    Jibladze, Mamuka
    [J]. ALGEBRA UNIVERSALIS, 2013, 70 (03) : 271 - 286
  • [34] Macphail’s theorem revisited
    Daniel Pellegrino
    Janiely Silva
    [J]. Archiv der Mathematik, 2021, 117 : 647 - 656
  • [35] Roe's theorem revisited
    Andersen, Nils Byrial
    [J]. INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (03) : 165 - 172
  • [36] Tanaka’s theorem revisited
    Saeideh Bahrami
    [J]. Archive for Mathematical Logic, 2020, 59 : 865 - 877
  • [37] Miller's theorem revisited
    Dutta Roy S.C.
    [J]. Circuits, Systems and Signal Processing, 2000, 19 (6) : 487 - 499
  • [38] LIOUVILLE'S THEOREM REVISITED
    Tojeiro, Ruy
    [J]. ENSEIGNEMENT MATHEMATIQUE, 2007, 53 (1-2): : 67 - 86
  • [39] A Luttinger's theorem revisited
    Farid, B
    [J]. PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1999, 79 (08): : 1097 - 1143
  • [40] WARING'S THEOREM REVISITED
    Rojas, Andres
    [J]. ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2019, 49 (03) : 979 - 1003