Electrochemical separation of CO2 from a simulated flue gas with high-temperature ceramic-carbonate membrane: New observations

被引:37
|
作者
Tong, Jingjing [1 ,2 ]
Zhang, Lingling [2 ]
Han, Minfang [1 ,3 ]
Huang, Kevin [2 ]
机构
[1] China Univ Mining & Technol, Sch Chem & Environm Engn, Beijing 100083, Peoples R China
[2] Univ S Carolina, Dept Mech Engn, Columbia, SC 29201 USA
[3] Tsinghua Univ, Dept Thermal Engn, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
Carbonate; Ceramic; CO2; separation; Membrane; Mixed conductor; DIOXIDE PERMEATION; ELECTRICAL-CONDUCTIVITY; CAPTURE; ABSORPTION; TRANSPORT; MODEL;
D O I
10.1016/j.memsci.2014.12.017
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Development of highly efficient and cost-effective carbon capture and storage technology is vitally important to the reduction of carbon emissions and mitigation of global climate change. In this study, a ceramic-carbonate membrane conducting both oxide-ions and carbonate-ions is explored to directly separate CO2 from a simulated flue gas in the temperature range of 550-650 degrees C. The CO2 permeation flux density is found to increase with temperature as well as concentrations of CO2 and O-2, and stable over a testing period of 100 h. It is also observed for the first time that the membrane is permeable to O-2. A parallel mechanism responsible for the facilitated CO2 and O-2 transport is proposed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 50 条
  • [1] Electrochemical Capture of CO2 from Natural Gas Using a High-Temperature Ceramic-Carbonate Membrane
    Tong, Jingjing
    Zhang, Lingling
    Fang, Jie
    Han, Minfang
    Huang, Kevin
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (04) : E43 - E46
  • [2] An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation
    Dong, Xueliang
    Landeros, Jose Ortiz
    Lin, Y. S.
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (83) : 9654 - 9656
  • [3] Silver-molten carbonate composite as a new high-flux membrane for electrochemical separation of CO2 from flue gas
    Xu, Nansheng
    Li, Xue
    Franks, Maxwell A.
    Zhao, Hailei
    Huang, Kevin
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2012, 401 : 190 - 194
  • [4] Development of New Bifunctional Dense Ceramic-Carbonate Membrane Reactors for Gas Mixtures Separation, through CO Oxidation and Subsequent CO2 Permeation
    Ovalle-Encinia, Oscar
    Sanchez-Camacho, Pedro
    Gonzalez-Varela, Daniela
    Pfeiffer, Heriberto
    [J]. ACS APPLIED ENERGY MATERIALS, 2019, 2 (02): : 1380 - 1387
  • [5] An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation (vol 49, pg 9654, 2013)
    Dong, Xueliang
    Landeros, Jose Ortiz
    Lin, Y. S.
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (100) : 11827 - 11827
  • [6] A New Ceramic-Carbonate Dual-Phase Membrane for High-Flux CO2 Capture
    Sun, Shichen
    Wen, Yeting
    Huang, Kevin
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (15) : 5454 - 5460
  • [7] A novel study of sulfur-resistance for CO2 separation through asymmetric ceramic-carbonate dual-phase membrane at high temperature
    Chen, Tianjia
    Wang, Zhigang
    Das, Sonali
    Liu, Lina
    Li, Yongdan
    Kawi, Sibudjing
    Lin, Y. S.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2019, 581 : 72 - 81
  • [8] High CO2 permeability of ceramic-carbonate dual-phase hollow fiber membrane at medium-high temperature
    Chen, Tianjia
    Wang, Zhigang
    Hu, Jiawei
    Wai, Ming Hui
    Kawi, Sibudjing
    Lin, Y. S.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2020, 597
  • [9] CO2 Separation Improvement Produced on a Ceramic-Carbonate Dense Membrane Superficially Modified with Au-Pd
    Ovalle-Encinia, Oscar
    Pfeiffer, Heriberto
    Ortiz-Landeros, Jose
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2018, 57 (28) : 9261 - 9268
  • [10] Separation of CO2 from flue gas using electrochemical cells
    Pennline, Henry W.
    Granite, Evan J.
    Luebke, David R.
    Kitchin, John R.
    Landon, James
    Weiland, Lisa M.
    [J]. FUEL, 2010, 89 (06) : 1307 - 1314