High CO2 permeability of ceramic-carbonate dual-phase hollow fiber membrane at medium-high temperature

被引:48
|
作者
Chen, Tianjia [1 ,3 ]
Wang, Zhigang [1 ]
Hu, Jiawei [1 ]
Wai, Ming Hui [1 ]
Kawi, Sibudjing [1 ]
Lin, Y. S. [2 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 117576, Singapore
[2] Arizona State Univ, Sch Engn Matter Transport & Energy, Tempe, AZ 85287 USA
[3] Inner Mongolia Univ Technol, Chem Engn Coll, Hohhot 010051, Peoples R China
关键词
Ceramic; Hollow fiber; Dual phase membrane; CO2; flux; Stability; DIOXIDE PERMEATION; PEROVSKITE MEMBRANES; SEPARATION MEMBRANES; OXYGEN SEPARATION; STABILITY; COMPOSITE; CAPTURE; METHANE; REACTOR; PERFORMANCE;
D O I
10.1016/j.memsci.2019.117770
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
CO2 separation through ceramic-carbonate dual-phase membrane from various industrial carbon sources has become a promising way to solve the high-temperature CO2 emission. In this study, we synthesize Ce0.8Sm0.2O2-delta(SDC)-carbonate dual-phase hollow fiber membranes using phase inversion method to separate CO2 under different feed conditions at high temperature. The SDC-carbonate hollow fiber membranes show not only high CO2 permeation flux but also stable permeation behavior during the test process. The maximum CO2 permeation flux reaches up to 4.78, 5.46 and 1.79 ml min(-1).cm(-2) under the feed condition of 50%CO2-50%N-2, 5%H-2-47.5% CO2-47.5%N-2 and 5%O-2-20%CO2-75%N-2, respectively, at 700 degrees C. These results are the highest CO2 permeation flux of the ceramic-carbonate membrane under the similar operation conditions in recent years. The excellent CO2 fluxes can be attributed to a unique and superior structure and a thinner thickness of the hollow fiber membrane. In addition, the membrane shows a stable time with 85 h during the long-term test process in a 50% CO2-50%N-2 feed stream.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A New Ceramic-Carbonate Dual-Phase Membrane for High-Flux CO2 Capture
    Sun, Shichen
    Wen, Yeting
    Huang, Kevin
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (15) : 5454 - 5460
  • [2] An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation
    Dong, Xueliang
    Landeros, Jose Ortiz
    Lin, Y. S.
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (83) : 9654 - 9656
  • [3] A novel study of sulfur-resistance for CO2 separation through asymmetric ceramic-carbonate dual-phase membrane at high temperature
    Chen, Tianjia
    Wang, Zhigang
    Das, Sonali
    Liu, Lina
    Li, Yongdan
    Kawi, Sibudjing
    Lin, Y. S.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2019, 581 : 72 - 81
  • [4] High-pressure CO2 permeation properties and stability of ceramic-carbonate dual-phase membranes
    Ovalle-Encinia, Oscar
    Lin, Jerry Y. S.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2022, 646
  • [5] Ceramic-carbonate dual-phase membrane with improved chemical stability for carbon dioxide separation at high temperature
    Norton, Tyler T.
    Lin, Y. S.
    [J]. SOLID STATE IONICS, 2014, 263 : 172 - 179
  • [6] High-temperature CO2 perm-selectivity of yttrium-doped SDC ceramic-carbonate dual-phase membranes
    Gonzalez-Varela, Daniela
    Ovalle-Encinia, Oscar
    Gomez-Garcia, J. Francisco
    Tavizon, Gustavo
    Pfeiffer, Heriberto
    [J]. REACTION CHEMISTRY & ENGINEERING, 2021, 6 (02) : 321 - 334
  • [7] An asymmetric tubular ceramic-carbonate dual phase membrane for high temperature CO2 separation (vol 49, pg 9654, 2013)
    Dong, Xueliang
    Landeros, Jose Ortiz
    Lin, Y. S.
    [J]. CHEMICAL COMMUNICATIONS, 2013, 49 (100) : 11827 - 11827
  • [8] CO2 permeation through asymmetric thin tubular ceramic-carbonate dual-phase membranes
    Dong, Xueliang
    Wu, Han-Chun
    Lin, Y. S.
    [J]. JOURNAL OF MEMBRANE SCIENCE, 2018, 564 : 73 - 81
  • [9] Water-gas shift reaction in ceramic-carbonate dual-phase membrane reactor at high temperatures and pressures
    Ovalle-Encinia, Oscar
    Lin, Jerry Y. S.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2022, 448
  • [10] Catalyst-Free Ceramic-Carbonate Dual-Phase Membrane Reactors for High-Temperature Water Gas Shift: A Simulation Study
    Meng, Lie
    Ovalle-Encinia, Oscar
    Lin, Jerry Y. S.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (09) : 3581 - 3588