A Symmetric Model of Viscous Relaxing Fluid. An Evolution Problem

被引:0
|
作者
Zakora, D. [1 ]
机构
[1] Taurida Natl VI Vernadsky Univ, UA-95007 Simferopol, Crimea, Ukraine
关键词
viscous fluid; compressible fluid; existence; uniqueness; integro-differential equation;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An evolution problem on small motions of the viscous rotating relaxing fluid in a bounded domain is studied. The problem is reduced to the Cauchy problem for the first-order integro-differential equation in a Hilbert space. Using this equation, we prove a strong unique solvability theorem for the corresponding initial-boundary value problem.
引用
收藏
页码:190 / 206
页数:17
相关论文
共 50 条
  • [21] ON THE DEFORMATION OF A VISCOUS DROP IN AN EXTENSIONAL FLOW OF A MICROPOLAR FLUID.
    Kaloni, P.N.
    1600, (24):
  • [22] SLOW MOTION OF A PARTICLE IN A WEAKLY ANISOTROPIC VISCOUS FLUID.
    Pokrovskii, V.N.
    Tskhai, A.A.
    1600, (50):
  • [23] EQUATION OF MOTION OF A SOLID PARTICLE IN A TURBULENT VISCOUS FLUID.
    Gubanov, A.M.
    Zhikharev, A.S.
    Kutepov, A.M.
    Theoretical Foundations of Chemical Engineering, 1985, 19 (05) : 416 - 422
  • [24] Simulation of the Brownian dynamics of a rigid sphere in a viscous fluid.
    Sholl, DS
    Fenwick, M
    Atman, E
    Prieve, DC
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 219 : U519 - U519
  • [25] Plane-symmetric mesonic viscous fluid cosmological model
    Singh, JK
    Ram, S
    ASTROPHYSICS AND SPACE SCIENCE, 1996, 236 (02) : 277 - 284
  • [26] DRAG ON A SPHERE MOVING SLOWLY IN A ROTATING VISCOUS FLUID.
    Weisenborn, A.J.
    Journal of Fluid Mechanics, 1985, 153 : 215 - 227
  • [27] FORCE ACTING ON A RIGID BODY MOVING IN A VISCOUS FLUID.
    Utkina, S.N.
    Moscow University mechanics bulletin, 1981, 36 (3-4) : 53 - 56
  • [28] LOW-FREQUENCY OSCILLATIONS OF A CYLINDER IN A VISCOUS FLUID.
    Amin, Norsarahaida
    Quarterly Journal of Mechanics and Applied Mathematics, 1988, 41 (pt 2): : 195 - 201
  • [29] WIND-GENERATED SURFACE WAVES ON A VISCOUS FLUID.
    Katsis, C.
    Akylas, T.R.
    1600, (52):
  • [30] Translation of a sphere in a rotating viscous fluid. A numerical study
    Raghava, Rao, C.V.
    Sekhar, T.V.S.
    1995, John Wiley & Sons Ltd, Chichester, Engl (20)