Cosmological spinor

被引:7
|
作者
Ben Achour, Jibril [1 ]
Livine, Etera R. [2 ]
机构
[1] Kyoto Univ, Yukawa Inst Theoret Phys, Ctr Gravitat Phys, Kyoto 6068502, Japan
[2] Univ Lyon, ENS Lyon, CNRS, Lab Phys LPENSL, F-69007 Lyon, France
来源
PHYSICAL REVIEW D | 2020年 / 101卷 / 10期
基金
日本学术振兴会;
关键词
PROOF;
D O I
10.1103/PhysRevD.101.103523
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We build upon previous investigation of the one-dimensional conformal symmetry of the Friedman-Lemattre-Robertson-Walker (FLRW) cosmology of a free scalar field and make it explicit through a reformulation of the theory at the classical level in terms of a manifestly SL(2, R)-invariant action principle. The new tool is a canonical transformation of the cosmological phase space to write it in terms of a spinor, i.e., a pair of complex variables that transform under the fundamental representation of SU(1, 1) similar to SL(2, R). The resulting FLRW Hamiltonian constraint is simply quadratic in the spinor and FLRW cosmology is written as a Schrodinger-like action principle. Conformal transformations can then be written as proper-time dependent SL(2, R) transformations. We conclude with possible generalizations of FLRW to arbitrary quadratic Hamiltonian and discuss the interpretation of the spinor as a gravitationally-dressed matter field or matter-dressed geometry observable.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] SPINOR SPINOR QUASIPOTENTIAL IN QUANTUM ELECTRODYNAMICS
    DESIMIROV, GM
    [J]. THEORETICAL AND MATHEMATICAL PHYSICS, 1987, 71 (03) : 611 - 616
  • [32] SOME PROBLEMS OF SPINOR AND ALGEBRAIC SPINOR STRUCTURES
    BUGAJSKA, K
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1986, 27 (11) : 2700 - 2705
  • [33] On the spinor representation
    Hoff da Silva, J. M.
    Coronado Villalobos, C. H.
    da Rocha, Roldao
    Bueno Rogerio, R. J.
    [J]. EUROPEAN PHYSICAL JOURNAL C, 2017, 77 (07):
  • [34] SPINOR GEOMETRY
    Nicolaidis, A.
    Kiosses, V.
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2012, 27 (22):
  • [35] SPINOR OPERATORS
    DELAJARA, J
    TABENSKY, R
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (26): : 6537 - 6553
  • [36] Spinor algebras
    D'Auria, R
    Ferrara, S
    Lledó, MA
    Varadarajan, VS
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2001, 40 (02) : 101 - 129
  • [37] Spinor Relativity
    Kind, Saskia
    [J]. INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2008, 47 (12) : 3341 - 3390
  • [38] SPINOR RELATIVITY
    INGRAHAM, RL
    [J]. NUOVO CIMENTO, 1953, 10 (01): : 27 - 42
  • [39] The spinor calculus
    Hill, E. L.
    [J]. PHYSICS-A JOURNAL OF GENERAL AND APPLIED PHYSICS, 1931, 1 (01): : 340 - 341
  • [40] SPINOR GEOMETRY
    KURDGELAIDZE, DF
    [J]. IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII FIZIKA, 1977, (02): : 7 - 12