Exponential global attractors for semigroups in metric spaces with applications to differential equations

被引:6
|
作者
Carvalho, Alexandre N. [1 ]
Cholewa, Jan W. [2 ]
机构
[1] Univ Sao Paulo, Inst Ciencias Matemat Comp, BR-13560970 Sao Carlos, SP, Brazil
[2] Silesian Univ, Inst Math, PL-40007 Katowice, Poland
基金
巴西圣保罗研究基金会;
关键词
PERTURBATION; CONTINUITY;
D O I
10.1017/S0143385710000702
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article semigroups in a general metric space V, which have pointwise exponentially attracting local unstable manifolds of compact invariant sets, are considered. We show that under a suitable set of assumptions these semigroups possess strong exponential dissipative properties. In particular, there exists a compact global attractor which exponentially attracts each bounded subset of V. Applications of abstract results to ordinary and partial differential equations are given.
引用
收藏
页码:1641 / 1667
页数:27
相关论文
共 50 条
  • [1] Exponential attractors for semigroups in Banach spaces
    Zhong, Yansheng
    Zhong, Chengkui
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (04) : 1799 - 1809
  • [2] DIFFERENTIAL EQUATIONS IN METRIC SPACES WITH APPLICATIONS
    Colombo, Rinaldo M.
    Guerra, Graziano
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 23 (03) : 733 - 753
  • [3] Global attractors for gradient flows in metric spaces
    Rossi, Riccarda
    Segatti, Antonio
    Stefanelli, Ulisse
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2011, 95 (02): : 205 - 244
  • [4] PULLBACK EXPONENTIAL ATTRACTORS FOR DIFFERENTIAL EQUATIONS WITH DELAY
    Netchaoui, Sana
    Hammami, Mohamed Ali
    Caraballo, Tomas
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2021, 14 (04): : 1345 - 1358
  • [5] Necessary and sufficient conditions for the existence of exponential attractors for semigroups, and applications
    Li, Yongjun
    Wu, Hongqing
    Zhao, Tinggang
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (17) : 6297 - 6305
  • [6] Boundedness and global exponential stability for delayed differential equations with applications
    Faria, Teresa
    Oliveira, Jose J.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2009, 214 (02) : 487 - 496
  • [7] PULLBACK EXPONENTIAL ATTRACTORS FOR DIFFERENTIAL EQUATIONS WITH VARIABLE DELAYS
    Hammami, Mohamed Ali
    Mchiri, Lassaad
    Netchaoui, Sana
    Sonner, Stefanie
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2020, 25 (01): : 301 - 319
  • [8] MAXIMAL ATTRACTORS OF SEMIGROUPS CORRESPONDING TO EVOLUTION DIFFERENTIAL-EQUATIONS
    BABIN, AV
    VISHIK, MI
    [J]. MATHEMATICS OF THE USSR-SBORNIK, 1985, 126 (3-4): : 387 - 408
  • [9] Extension of the Kantorovich Theorem to Equations in Vector Metric Spaces: Applications to Functional Differential Equations
    Zhukovskiy, Evgeny
    Panasenko, Elena
    [J]. MATHEMATICS, 2024, 12 (01)
  • [10] EXPONENTIAL ATTRACTORS FOR ABSTRACT EQUATIONS WITH MEMORY AND APPLICATIONS TO VISCOELASTICITY
    Danese, Valeria
    Geredeli, Pelin G.
    Pata, Vittorino
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2015, 35 (07) : 2881 - 2904