Global attractors for gradient flows in metric spaces

被引:9
|
作者
Rossi, Riccarda [1 ]
Segatti, Antonio [2 ]
Stefanelli, Ulisse [3 ]
机构
[1] Univ Brescia, Dipartimento Matemat, I-25133 Brescia, Italy
[2] Dipartimento Matemat F Casorati, I-27100 Pavia, Italy
[3] IMATI CNR, I-27100 Pavia, Italy
来源
关键词
Analysis in metric spaces; Curves of maximal slope; Global attractor; Gradient flows in Wasserstein spaces; Doubly nonlinear equations; MULTIVALUED SEMIFLOWS; EVOLUTION-EQUATIONS; FUNCTIONALS;
D O I
10.1016/j.matpur.2010.10.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop the long-time analysis for gradient flow equations in metric spaces. In particular, we consider two notions of solutions for metric gradient flows, namely energy and generalized solutions. While the former concept coincides with the notion of curves of maximal slope of Ambrosio et al. (2005) [5], we introduce the latter to include limits of time-incremental approximations constructed via the Minimizing Movements approach (De Giorgi, 1993; Ambrosio, 1995 [15,3]). For both notions of solutions we prove the existence of the global attractor. Since the evolutionary problems we consider may lack uniqueness, we rely on the theory of generalized semiflows introduced in Ball (1997) [7]. The notions of generalized and energy solutions are quite flexible, and can be used to address gradient flows in a variety of contexts, ranging from Banach spaces, to Wasserstein spaces of probability measures. We present applications of our abstract results, by proving the existence of the global attractor for the energy solutions, both of abstract doubly nonlinear evolution equations in reflexive Banach spaces, and of a class of evolution equations in Wasserstein spaces, as well as for the generalized solutions of some phase-change evolutions driven by mean curvature. (C) 2010 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:205 / 244
页数:40
相关论文
共 50 条