Graphene Oxide Membranes with Heterogeneous Nanodomains for Efficient CO2 Separations

被引:127
|
作者
Wang, Shaofei [1 ,2 ,3 ]
Xie, Yu [1 ,2 ]
He, Guangwei [1 ,2 ]
Xin, Qingping [3 ]
Zhang, Jinhui [3 ]
Yang, Leixin [1 ,2 ]
Li, Yifan [4 ]
Wu, Hong [1 ,2 ]
Zhang, Yuzhong [3 ]
Guiver, Michael D. [2 ,5 ]
Jiang, Zhongyi [1 ,2 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300072, Peoples R China
[3] Tianjin Polytech Univ, State Key Lab Separat Membranes & Membrane Proc, Natl Ctr Int Joint Res Separat Membranes, Sch Mat Sci & Engn, Tianjin 300387, Peoples R China
[4] Zhengzhou Univ, Sch Chem Engn & Energy, Zhengzhou 450001, Henan, Peoples R China
[5] Tianjin Univ, Sch Mech Engn, State Key Lab Engines, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
CO2; separation; graphene oxide membranes; heterogeneous nanodomains; interlayer nanochannels; ordered stacking; VISIBLE-LIGHT PHOTOREDOX; CROSS-COUPLING REACTIONS; HECK-TYPE REACTION; ONE-POT SYNTHESIS; C-H ARYLATION; DIASTEREOSELECTIVE ADDITION; ALKYL BROMIDES; PALLADIUM; ARYL; CATALYSIS;
D O I
10.1002/anie.201708048
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Achieving high membrane performance in terms of gas permeance and carbon dioxide selectivity is an important target in carbon capture. Aiming to manipulate the channel affinity towards CO2 to implement efficient separations, gas separation membranes containing CO2-philic and non-CO(2)philic nanodomains in the interlayer channels of graphene oxide (GO) were formed by intercalating poly(ethylene glycol) diamines (PEGDA). PEGDA reacts with epoxy groups on the GO surface, constructing CO2-philic nanodomains and rendering a high sorption capacity, whereas unreacted GO surfaces give non-CO2-philic nanodomains, rendering low-friction diffusion. Owing to the orderly stacking of nanochannels through cross-linking and the heterogeneous nanodomains with moderate CO2 affinity, a GO-PEGDA500 membrane exhibits a high CO2 permeance of 175.5 GPU and a CO2/CH4 selectivity of 69.5, which is the highest performance reported for dry-state GO-stacking membranes.
引用
收藏
页码:14246 / 14251
页数:6
相关论文
共 50 条
  • [1] Highly Permeable Polyaniline-Graphene Oxide Nanocomposite Membranes for CO2 Separations
    Kweon, Hyukmin
    Lin, Cheng-Wei
    Hasan, M. M. Faruque
    Kaner, Richard
    Sant, Gaurav N.
    [J]. ACS APPLIED POLYMER MATERIALS, 2019, 1 (12) : 3233 - 3241
  • [2] Functionalized graphene oxide as an efficient adsorbent for CO2 capture and support for heterogeneous catalysis
    Bhanja, Piyali
    Das, Sabuj Kanti
    Patra, Astam K.
    Bhaumik, Asim
    [J]. RSC ADVANCES, 2016, 6 (76) : 72055 - 72068
  • [3] Water nanodomains for efficient photocatalytic CO2 reduction to CO
    Chen, Gang
    Cheng, Xiuyan
    Zhang, Jianling
    Wan, Qiang
    Duan, Ran
    Han, Buxing
    Cui, Jie
    Xiang, Junfeng
    Guan, Bo
    Xing, Xueqing
    Mo, Guang
    Wu, Zhonghua
    [J]. GREEN CHEMISTRY, 2021, 23 (22) : 9078 - 9083
  • [4] Imidazole functionalized graphene oxide/PEBAX mixed matrix membranes for efficient CO2 capture
    Dai, Yan
    Ruan, Xuehua
    Yan, Zhijun
    Yang, Kai
    Yu, Miao
    Li, Hao
    Zhao, Wei
    He, Gaohong
    [J]. SEPARATION AND PURIFICATION TECHNOLOGY, 2016, 166 : 171 - 180
  • [5] Graphene Oxide Nanosheets Based Novel Facilitated Transport Membranes for Efficient CO2 Capture
    Dong, Guanying
    Zhang, Yatao
    Hou, Jingwei
    Shen, Jiangnan
    Chen, Vicki
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (18) : 5403 - 5414
  • [6] Graphene oxide doped ionic liquid ultrathin composite membranes for efficient CO2 capture
    Karunakaran, M.
    Villalobos, L. F.
    Kumar, M.
    Shevate, R.
    Akhtar, F. H.
    Peinemann, K. -V.
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (02) : 649 - 656
  • [7] Nanocomposite membranes for CO2 separations:: Silica/brominated poly(phenylene oxide)
    Hu, Xudong
    Cong, Hailin
    Shen, Youqing
    Radosz, Maciej
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2007, 46 (05) : 1547 - 1551
  • [8] Biorefinery Separations with Graphene Oxide Membranes
    Nair, Sankar
    [J]. Chemical Engineering Progress, 2022, 118 (04) : 39 - 43
  • [9] Optimizing membranes structures for CO2 separations
    Kusuma, Victor A.
    Offord, Grant
    Freeman, Benny D.
    [J]. ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2008, 235
  • [10] Graphene oxide membranes in fluid separations
    Chong, J. Y.
    Wang, B.
    Li, K.
    [J]. CURRENT OPINION IN CHEMICAL ENGINEERING, 2016, 12 : 98 - 105