iTRAQ-Based Proteomic Analysis Reveals Several Strategies to Cope with Drought Stress in Maize Seedlings

被引:16
|
作者
Jiang, Zhilei [1 ]
Jin, Fengxue [1 ]
Shan, Xiaohui [2 ]
Li, Yidan [1 ]
机构
[1] Jilin Acad Agr Sci, Jilin Prov Key Lab Agr Biotechnol, Inst Agr Biotechnol, Changchun 130033, Jilin, Peoples R China
[2] Jilin Univ, Coll Plant Sci, Changchun 130062, Jilin, Peoples R China
关键词
iTRAQ; proteomics; drought stress; differentially accumulated protein species (DAPS); Zea mays L; HISTONE DEACETYLASE HDA101; HEAT-SHOCK PROTEINS; ABIOTIC STRESS; ABSCISIC-ACID; LIPID-METABOLISM; WATER-STRESS; TOLERANCE; GENE; EXPRESSION; GIBBERELLIN;
D O I
10.3390/ijms20235956
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Drought stress, especially during the seedling stage, seriously limits the growth of maize and reduces production in the northeast of China. To investigate the molecular mechanisms of drought response in maize seedlings, proteome changes were analyzed. Using an isotopic tagging relative quantitation (iTRAQ) based method, a total of 207 differentially accumulated protein species (DAPS) were identified under drought stress in maize seedlings. The DAPS were classified into ten essential groups and analyzed thoroughly, which involved in signaling, osmotic regulation, protein synthesis and turnover, reactive oxygen species (ROS) scavenging, membrane trafficking, transcription related, cell structure and cell cycle, fatty acid metabolism, carbohydrate and energy metabolism, as well as photosynthesis and photorespiration. The enhancements of ROS scavenging, osmotic regulation, protein turnover, membrane trafficking, and photosynthesis may play important roles in improving drought tolerance of maize seedlings. Besides, the inhibitions of some protein synthesis and slowdown of cell division could reduce the growth rate and avoid excessive water loss, which is possible to be the main reasons for enhancing drought avoidance of maize seedlings. The incongruence between protein and transcript levels was expectedly observed in the process of confirming iTRAQ data by quantitative real-time polymerase chain reaction (qRT-PCR) analysis, which further indicated that the multiplex post-transcriptional regulation and post-translational modification occurred in drought-stressed maize seedlings. Finally, a hypothetical strategy was proposed that maize seedlings coped with drought stress by improving drought tolerance (via. promoting osmotic adjustment and antioxidant capacity) and enhancing drought avoidance (via. reducing water loss). Our study provides valuable insight to mechanisms underlying drought response in maize seedlings.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] iTRAQ-based quantitative proteomic analysis of the response of Hylotelephium erythrostictum leaves to salt stress
    Zhao, Xueqi
    Chen, Zhixin
    Leng, Pingsheng
    Hu, Zenghui
    SCIENTIA HORTICULTURAE, 2020, 264
  • [42] ITRAQ-based quantitative proteomic analysis of japonica rice seedling during cold stress
    Qing, Dongjin
    Deng, Guofu
    Pan, Yinghua
    Gao, Lijun
    Liang, Haifu
    Zhou, Weiyong
    Chen, Weiwei
    Li, Jingcheng
    Huang, Juan
    Gao, Ju
    Lu, Chunju
    Wu, Hao
    Liu, Kaiqiang
    Dai, Gaoxing
    BREEDING SCIENCE, 2022, 72 (02) : 150 - 168
  • [43] iTRAQ-based quantitative proteomic analysis of Thermobifida fusca reveals metabolic pathways of cellulose utilization
    Adav, Sunil S.
    Ng, Chee Sheng
    Sze, Siu Kwan
    JOURNAL OF PROTEOMICS, 2011, 74 (10) : 2112 - 2122
  • [44] iTRAQ-based quantitative proteomic analysis of key barley proteins reveals changes after malting
    Strouhalova, Dana
    Benkovska, Dagmar
    Bobalova, Janette
    JOURNAL OF LIQUID CHROMATOGRAPHY & RELATED TECHNOLOGIES, 2018, 41 (17-18) : 998 - 1003
  • [45] iTRAQ-based quantitative proteomic analysis ofSargassum fusiformein response to high temperature stress
    Liu, Lijie
    Lin, Lidong
    Ma, Zengling
    Wang, Guangce
    Wu, Mingjiang
    AQUACULTURE RESEARCH, 2021, 52 (01) : 185 - 195
  • [46] iTRAQ-based quantitative proteomic analysis reveals dynamic changes during daylily flower senescence
    Guangying Ma
    Xiaohua Shi
    Qingcheng Zou
    Danqing Tian
    Xia An
    Kaiyuan Zhu
    Planta, 2018, 248 : 859 - 873
  • [47] iTRAQ-based proteomic analysis of imiquimod in the treatment of ulcerative colitis
    Guo, Jinkun
    Chen, Na
    Tan, Feifei
    Zhou, Julan
    Xiang, Hongyu
    Luo, Yu
    Zhou, Zhongyin
    AMERICAN JOURNAL OF TRANSLATIONAL RESEARCH, 2023, 15 (07): : 4454 - 4466
  • [48] iTRAQ-based proteomic analysis of Paracoccidioides brasiliensis in response to hypoxia
    Oliveira, Lucas Nojosa
    Lima, Patricia de Sousa
    Araujo, Danielle Silva
    Portis, Igor Godinho
    Moreira dos Santos Junior, Agenor de Castro
    Guedes Coelho, Alexandre Siqueira
    de Sousa, Marcelo Valle
    Ornelas Ricart, Carlos Andre
    Fontes, Wagner
    de Almeida Soares, Celia Maria
    MICROBIOLOGICAL RESEARCH, 2021, 247
  • [49] iTRAQ-based proteomic analysis of endotoxin tolerance induced by lipopolysaccharide
    Zhang, Qian
    Hu, Yingchun
    Zhang, Jing
    Deng, Cunliang
    MOLECULAR MEDICINE REPORTS, 2019, 20 (01) : 584 - 592
  • [50] ITRAQ-Based Proteomic Analysis of The Response to Ralstonia solanacearum in Potato
    Feng, Jinlin
    Yao, Lixia
    Qin, Minghui
    Gao, Gang
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2022, 59 (02): : 165 - 171