Low Frequency Ultrasonic Voice Activity Detection using Convolutional Neural Networks

被引:0
|
作者
McLoughlin, Ian [1 ,2 ]
Song, Yan [2 ]
机构
[1] Univ Kent, Sch Comp Sci, Rochester, Kent, England
[2] Univ Sci & Technol China, Hefei, Anhui, Peoples R China
关键词
Voice activity detection; speech activity detection; ultrasonic speech; SaVAD;
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Low frequency ultrasonic mouth state detection uses reflected audio chirps from the face in the region of the mouth to determine lip state, whether open, closed or partially open. The chirps are located in a frequency range just above the threshold of human hearing and are thus both inaudible as well as unaffected by interfering speech, yet can be produced and sensed using inexpensive equipment. To determine mouth open or closed state, and hence form a measure of voice activity detection, this recently invented technique relies upon the difference in the reflected chirp caused by resonances introduced by the open or partially open mouth cavity. Voice activity is then inferred from lip state through patterns of mouth movement, in a similar way to video-based lip-reading technologies. This paper introduces a new metric based on spectrogram features extracted from the reflected chirp, with a convolutional neural network classification back-end, that yields excellent performance without needing the periodic resetting of the template closed-mouth reflection required by the original technique.
引用
收藏
页码:2400 / 2404
页数:5
相关论文
共 50 条
  • [41] Fingerprint Liveness Detection Using Convolutional Neural Networks
    Nogueira, Rodrigo Frassetto
    Lotufo, Roberto de Alencar
    Machado, Rubens Campos
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2016, 11 (06) : 1206 - 1213
  • [43] Microaneurysm detection using fully convolutional neural networks
    Chudzik, Piotr
    Majumdar, Somshubra
    Caliva, Francesco
    Al-Diri, Bashir
    Hunter, Andrew
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2018, 158 : 185 - 192
  • [44] Fall detection using mixtures of convolutional neural networks
    Thao V. Ha
    Hoang M. Nguyen
    Son H. Thanh
    Binh T. Nguyen
    Multimedia Tools and Applications, 2024, 83 : 18091 - 18118
  • [45] Facial Smile Detection Using Convolutional Neural Networks
    Dinh Viet Sang
    Le Tran Bao Cuong
    Do Phan Thuan
    2017 9TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2017), 2017, : 136 - 141
  • [46] Stroke Lesion Detection Using Convolutional Neural Networks
    Pereira, Danillo Roberto
    Reboucas Filho, Pedro P.
    de Rosa, Gustavo Henrique
    Papa, Joao Paulo
    de Albuquerque, Victor Hugo C.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [47] Android Botnet Detection using Convolutional Neural Networks
    Hojjatinia, Sina
    Hamzenejadi, Sajad
    Mohseni, Hadis
    2020 28TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE), 2020, : 674 - 679
  • [48] Periodontal Disease Detection Using Convolutional Neural Networks
    Joo, Jaehan
    Jeong, Sinjin
    Jin, Heetae
    Lee, Uhyeon
    Yoon, Ji Young
    Kim, Suk Chan
    2019 1ST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE IN INFORMATION AND COMMUNICATION (ICAIIC 2019), 2019, : 360 - 362
  • [49] Clothes Detection and Classification Using Convolutional Neural Networks
    Cychnerski, Jan
    Brzeski, Adam
    Boguszewski, Adrian
    Marmolowski, Mateusz
    Trojanowicz, Marek
    2017 22ND IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2017,
  • [50] Detection of magnetohydrodynamic waves by using convolutional neural networks
    Chen, Fang
    Samtaney, Ravi
    PHYSICS OF FLUIDS, 2022, 34 (10)