Exceptional Points in Random-Defect Phonon Lasers

被引:111
|
作者
Lu, H. [1 ,2 ,3 ,7 ]
Ozdemir, S. K. [4 ]
Kuang, L. -M. [1 ,2 ]
Nori, Franco [5 ,6 ]
Jing, H. [1 ,2 ]
机构
[1] Hunan Normal Univ, Dept Phys, Minist Educ, Key Lab Low Dimens Quantum Struct & Quantum Contr, Changsha 410081, Hunan, Peoples R China
[2] Hunan Normal Univ, Synerget Innovat Ctr Quantum Effects & Applicat, Changsha 410081, Hunan, Peoples R China
[3] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab Quantum Opt, Shanghai 201800, Peoples R China
[4] Penn State Univ, Dept Engn Sci & Mech, 227 Hammond Bldg, University Pk, PA 16802 USA
[5] RIKEN, CEMS, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
[6] Univ Michigan, Phys Dept, Ann Arbor, MI 48109 USA
[7] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2017年 / 8卷 / 04期
基金
中国国家自然科学基金;
关键词
NON-HERMITIAN HAMILTONIANS; SYMMETRY; STATES; OPTOMECHANICS; RESONATOR; GLASSES; SOLIDS; CAVITY; QUBIT; HEAT;
D O I
10.1103/PhysRevApplied.8.044020
中图分类号
O59 [应用物理学];
学科分类号
摘要
Intrinsic defects in optomechanical devices are generally viewed to be detrimental for achieving coherent amplification of phonons, and great care has thus been exercised in fabricating devices and materials with no (or a minimal number of) defects. Contrary to this view, here we show that, by surpassing an exceptional point (EP), both the mechanical gain and the phonon number can be enhanced despite increasing defect losses. This counterintuitive effect, well described by an effective non-Hermitian phonon-defect model, provides a mechanical analog of the loss-induced purely optical lasing. This opens the way to operating random-defect phonon devices at EPs.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Exceptional Points Induced by Time-Varying Mass to Enhance the Sensitivity of Defect Detection
    Yuan, Jinbo
    Geng, Linlin
    Huang, Jiahui
    Guo, Qiuquan
    Yang, Jun
    Hu, Gengkai
    Zhou, Xiaoming
    PHYSICAL REVIEW APPLIED, 2022, 18 (06)
  • [22] Circling exceptional points
    Dieter Heiss
    Nature Physics, 2016, 12 : 823 - 824
  • [23] Supersymmetry and Exceptional Points
    Znojil, Miloslav
    SYMMETRY-BASEL, 2020, 12 (06):
  • [24] Robust Exceptional Points
    Ramezani, Hamidreza
    Yuce, Cem
    2019 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2019,
  • [25] Sensing at Exceptional Points
    Ozdemir, Sahin K.
    2020 IEEE SENSORS, 2020,
  • [26] The chirality of exceptional points
    Heiss, WD
    Harney, HL
    EUROPEAN PHYSICAL JOURNAL D, 2001, 17 (02): : 149 - 151
  • [27] Exceptional points in metasurface
    Qi H.
    Wang X.
    Hu X.
    Gong Q.
    1600, Chinese Society of Astronautics (49):
  • [28] The chirality of exceptional points
    W.D. Heiss
    H.L. Harney
    The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics, 2001, 17 : 149 - 151
  • [29] Circling exceptional points
    Heiss, Dieter
    NATURE PHYSICS, 2016, 12 (09) : 823 - 824
  • [30] The physics of exceptional points
    Heiss, W. D.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2012, 45 (44)