Influence of steel fiber on compressive properties of ultra-high performance fiber-reinforced concrete

被引:64
|
作者
Yang, Jian [1 ,2 ]
Chen, Baochun [2 ,3 ]
Nuti, Camillo [4 ]
机构
[1] China Three Gorges Univ, Key Lab Geol Hazards Three Gorges Reservoir Area, Minist Educ, Yichang, Peoples R China
[2] Fuzhou Univ, Coll Civil Engn, Fuzhou, Peoples R China
[3] Natl Ctr Joint Int Res Bridges Technol Innovat &, Fuzhou, Peoples R China
[4] Univ Rome Tre, Dept Architecture, Rome, Italy
基金
美国国家科学基金会;
关键词
Ultra-high performance fiber-reinforced con-crete (UHPFRC); Steel fiber; Compressive strength; Flowability; Modulus of elasticity; Prediction formula; MECHANICAL-PROPERTIES; UNIAXIAL TENSILE; BEHAVIOR; STRENGTH; UHPC; DURABILITY; ELASTICITY; RATIO; MODEL;
D O I
10.1016/j.conbuildmat.2021.124104
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The compressive properties (include compressive strength and modulus of elasticity) of Ultra-high performance fiber-reinforced concrete (UHPFRC) are the most important performance index in structural design. This paper presents experimental results from tests conducted on 36 UHPFRCs with different volume fractions and aspect ratios of steel fiber to investigate the effect of steel fiber on the compressive properties of UHPFRC. The test results indicated that the compressive strength and modulus of elasticity of the hardened UHPFRC increase as the fiber volume fraction or aspect ratio increases. However, the increase trend of compressive strength and modulus of elasticity slowed down when the volume fraction exceeded 2%. It was observed that the steel fiber can restrain the occurrence and development of cracks when UHPFRC specimens are compressed, provided a positive effect for reinforcing UHPFRC, but it also reduced the flowability of fresh UHPFRC, which is negative for reinforcing effect. X-ray CT scanning revealed that the porosity and pore size of hardened UHPFRC increased with the increase of the fiber volume fraction due to its weakened flowability. A prediction model was established based on the analysis of the positive and negative effects of the steel fiber. Semi-empirical prediction formulas for the compressive strength and modulus of elasticity were proposed by regression analysis of the test data in this paper, which were verified and revised by the experimental database of 155 tests from literature. In addition, a relationship formula between modulus of elasticity and compressive strength of UHPFRC was presented, and was verified and revised by the experimental database of 320 tests conducted around the world.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Compressive and flexural properties of ultra-high performance fiber-reinforced cementitious composite: The effect of coarse aggregate
    Wu, Fanghong
    Xu, Lihua
    Chi, Yin
    Zeng, Yanqin
    Deng, Fangqian
    Chen, Qian
    COMPOSITE STRUCTURES, 2020, 236 (236)
  • [22] Triaxial compressive behavior of 3D printed PE fiber-reinforced ultra-high performance concrete
    Zeng, Jun-Jie
    Hu, Xianwen
    Sun, Hou-Qi
    Liu, Yue
    Chen, Wei-Jian
    Zhuge, Yan
    CEMENT & CONCRETE COMPOSITES, 2025, 155
  • [23] Influence of Specimen Size and Fiber Content on Mechanical Properties of Ultra-High-Performance Fiber-Reinforced Concrete
    Kazemi, Sadegh
    Lubell, Adam S.
    ACI MATERIALS JOURNAL, 2012, 109 (06) : 675 - 684
  • [24] Flexural Performance of Lightly Reinforced Concrete Beams with Ultra-High Strength Fiber-Reinforced Concrete (UHSFRC)
    Kang, Su-Tae
    Ryu, Gum-Sung
    Park, Jung-Jun
    Koh, Kyung-Taek
    Kim, Sung-Wook
    ADVANCED SCIENCE LETTERS, 2011, 4 (03) : 1032 - 1038
  • [25] Compressive behavior of FRP-confined ultra-high performance concrete (UHPC) and ultra-high performance fiber reinforced concrete (UHPFRC)
    Wang, J. J.
    Zhang, S. S.
    Nie, X. F.
    Yu, T.
    COMPOSITE STRUCTURES, 2023, 312
  • [26] Effect of age on the compressive strength of ultra-high-performance fiber-reinforced concrete
    Pourbaba, Masoud
    Asefi, Elyar
    Sadaghian, Hamed
    Mirmiran, Amir
    CONSTRUCTION AND BUILDING MATERIALS, 2018, 175 : 402 - 410
  • [27] Correlation of Compressive Strength and Other Engineering Properties of High-Performance Steel Fiber-Reinforced Concrete
    Perumal, Ramadoss
    JOURNAL OF MATERIALS IN CIVIL ENGINEERING, 2015, 27 (01)
  • [28] Static and dynamic compressive properties of ultra-high performance concrete (UHPC) with hybrid steel fiber reinforcements
    Wu, Zemei
    Shi, Caijun
    He, Wen
    Wang, Dehui
    CEMENT & CONCRETE COMPOSITES, 2017, 79 : 148 - 157
  • [29] Effects of Steel Fiber Percentage and Aspect Ratios on Fresh and Harden Properties of Ultra-High Performance Fiber Reinforced Concrete
    Biswas, Rajib Kumar
    Bin Ahmed, Farabi
    Haque, Md. Ehsanul
    Provasha, Afra Anam
    Hasan, Zahid
    Hayat, Faria
    Sen, Debasish
    APPLIED MECHANICS, 2021, 2 (03): : 501 - 515
  • [30] Influence of elevated temperature on the engineering properties of ultra-high-performance fiber-reinforced concrete
    Abadel, Aref A.
    Khan, M. Iqbal
    Masmoudi, Radhouane
    MATERIALS SCIENCE-POLAND, 2023, 41 (01) : 140 - 160