Coexistence solutions for a reaction-diffusion system of un-stirred chemostat model

被引:10
|
作者
Zheng, SN [1 ]
Liu, J [1 ]
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
关键词
chemostat; reaction-diffusion; degree theory; fixed point index; steady state;
D O I
10.1016/S0096-3003(02)00732-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study a reaction-diffusion system of multiple food chain model, where two predators feed on a single prey growing in an tin-stirred chemostat. The conditions for the coexistence of steady states are determined. The main technique used here is the degree theory in cones. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:579 / 590
页数:12
相关论文
共 50 条
  • [21] Coexistence of Competing Species for Intermediate Dispersal Rates in a Reaction–Diffusion Chemostat Model
    Junping Shi
    Yixiang Wu
    Xingfu Zou
    Journal of Dynamics and Differential Equations, 2020, 32 : 1085 - 1112
  • [22] Global boundedness of solutions to a reaction-diffusion system
    Zheng, SN
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1999, 22 (01) : 43 - 54
  • [23] GLOBAL EXISTENCE OF SOLUTIONS FOR A REACTION-DIFFUSION SYSTEM
    Aoyagi, Yutaka
    Tsutaya, Kimitoshi
    Yamauchi, Yusuke
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2007, 20 (12) : 1321 - 1339
  • [24] Global behavior of solutions to a reaction-diffusion system
    Cui, SB
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 42 (03) : 351 - 379
  • [26] Global Stability of Solutions in a Reaction-Diffusion System of Predator-Prey Model
    Luo, Demou
    Liu, Hailin
    FILOMAT, 2018, 32 (13) : 4665 - 4672
  • [27] SOME MONOTONE PROPERTIES FOR SOLUTIONS TO A REACTION-DIFFUSION MODEL
    Li, Rui
    Lou, Yuan
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (08): : 4445 - 4455
  • [28] Traveling Wave Solutions in a Reaction-Diffusion Epidemic Model
    Wang, Sheng
    Liu, Wenbin
    Guo, Zhengguang
    Wang, Weiming
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [29] On multidimensional exact solutions of a nonlinear reaction-diffusion system
    Kosov, A. A.
    Semenov, E. I.
    Tirskikh, V. V.
    VESTNIK UDMURTSKOGO UNIVERSITETA-MATEMATIKA MEKHANIKA KOMPYUTERNYE NAUKI, 2023, 33 (02): : 225 - 239
  • [30] Nontrivial equilibrium solutions for a semilinear reaction-diffusion system
    Gu, YG
    Sun, WJ
    APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION, 2004, 25 (12) : 1382 - 1389