Water Level Prediction Model Applying a Long Short-Term Memory (LSTM)-Gated Recurrent Unit (GRU) Method for Flood Prediction

被引:33
|
作者
Cho, Minwoo [1 ]
Kim, Changsu [1 ]
Jung, Kwanyoung [1 ]
Jung, Hoekyung [1 ]
机构
[1] Paichai Univ, Dept Comp Sci & Engn, 155-40 Baejae Ro, Daejeon 35345, South Korea
关键词
water level prediction; long short-term memory (LSTM); gated recurrent unit (GRU); meteorology data; ARTIFICIAL NEURAL-NETWORKS; INUNDATION; THRESHOLDS;
D O I
10.3390/w14142221
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The damage caused by floods is increasing worldwide, and if floods can be predicted, the economic and human losses from floods can be reduced. A key parameter of flooding is water level data, and this paper proposes a water level prediction model using long short-term memory (LSTM) and a gated recurrent unit (GRU). As variables used as input data, meteorological data, including upstream and downstream water level, temperature, humidity, and precipitation, were used. The best results were obtained when the LSTM-GRU-based model and the Automated Synoptic Observing System (ASOS) meteorological data were included in the input data when experiments were performed with various model structures and different input data formats. As a result of the experiment, the mean squared error (MSE) value was 3.92, the Nash-Sutcliffe coefficient of efficiency (NSE) value was 0.942, and the mean absolute error (MAE) value was 2.22, the highest result in all cases. In addition, the test data included the historical maximum water level of 3552.38 cm in the study area, and the maximum water level error was also recorded as 55.49, the lowest result. Through this paper, it was possible to confirm the performance difference according to the composition of the input data and the time series prediction model. In a future study, we plan to implement a flood risk management system that can use the predicted water level to determine the risk of flooding, and evacuate in advance.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Well performance prediction based on Long Short-Term Memory (LSTM) neural network
    Huang, Ruijie
    Wei, Chenji
    Wang, Baohua
    Yang, Jian
    Xu, Xin
    Wu, Suwei
    Huang, Suqi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 208
  • [22] Optimized long short-term memory (LSTM) network for performance prediction in unconventional reservoirs
    Qiu, Kaixuan
    Li, Jia
    Chen, Da
    ENERGY REPORTS, 2022, 8 : 15436 - 15445
  • [23] Wind Speed Prediction and Visualization Using Long Short-Term Memory Networks (LSTM)
    Ehsan, Amimul
    Shahirinia, Amir
    Zhang, Nian
    Oladunni, Timothy
    2020 10TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST), 2020, : 234 - 240
  • [24] Water level prediction of Lake Poyang based on long short-term memory neural network
    Guo Y.
    Lai X.
    Lai, Xijun (xjlai@niglas.ac.cn), 1600, Science Press (32): : 865 - 876
  • [25] A Streaming Data Prediction Method Based on Long short-term Memory Model and Grey Model
    Yang, Liping
    Sun, Sisi
    Xin, Rui
    2021 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, INFORMATION AND COMMUNICATION ENGINEERING, 2021, 11933
  • [26] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Peng Chen
    Rong Wang
    Yibin Yao
    Hao Chen
    Zhihao Wang
    Zhiyuan An
    Journal of Geodesy, 2023, 97
  • [27] A short-term prediction model of global ionospheric VTEC based on the combination of long short-term memory and convolutional long short-term memory
    Chen, Peng
    Wang, Rong
    Yao, Yibin
    Chen, Hao
    Wang, Zhihao
    An, Zhiyuan
    JOURNAL OF GEODESY, 2023, 97 (05)
  • [28] Stock Price Prediction With Long Short-Term Memory Recurrent Neural Network
    Jeenanunta, Chawalit
    Chaysiri, Rujira
    Thong, Laksmey
    2018 INTERNATIONAL CONFERENCE ON EMBEDDED SYSTEMS AND INTELLIGENT TECHNOLOGY & INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY FOR EMBEDDED SYSTEMS (ICESIT-ICICTES), 2018,
  • [29] A long short-term memory based wind power prediction method
    Huang, Yufeng
    Ding, Min
    Fang, Zhijian
    Wang, Qingyi
    Tan, Zhili
    Lil, Danyun
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 5927 - 5932
  • [30] Short-term Traffic Flow Prediction with LSTM Recurrent Neural Network
    Kang, Danqing
    Lv, Yisheng
    Chen, Yuan-yuan
    2017 IEEE 20TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2017,