Molecular dynamics study of the conformational stability of esterase 2 from Alicyclobacillus acidocaldarius

被引:5
|
作者
Pagano, Bruno [2 ]
Del Vecchio, Pompea [3 ]
Mattia, Carlo A. [2 ]
Graziano, Giuseppe [1 ]
机构
[1] Univ Sannio, Dipartimento Sci Biol & Ambientali, I-82100 Benevento, Italy
[2] Univ Salerno, Dipartimento Sci Farmaceut & Biomed, I-84084 Fisciano, Italy
[3] Univ Naples Federico II, Dipartimento Chim Paolo Corradini, I-80126 Naples, Italy
关键词
Thermophilic esterase; Conformational stability; Cooperative and coupled domains; Molecular dynamics simulations; HORMONE-SENSITIVE LIPASE; PROTEIN SECONDARY STRUCTURE; THERMOPHILIC ESTERASES; BACILLUS-ACIDOCALDARIUS; SEQUENCE SIMILARITY; ACTIVE-SITE; SUBFAMILY; IDENTIFICATION; TEMPERATURE; SPECIFICITY;
D O I
10.1016/j.ijbiomac.2011.09.002
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Circular dichroism and differential scanning calorimetry measurements showed that esterase 2 from the thermophilic microorganism Alicyclobacillus acidocaldarius, EST2, and its variant in which the first 35 residues have been deleted. EST2-36del, unfold reversibly on increasing temperature, and possess two cooperative and coupled domains [12]. Structural features of the alpha/beta hydrolase fold of EST2, with nine alpha-helices packed against the central twisted beta-sheet, do not allow a straightforward identification of these two cooperative and coupled domains. Molecular dynamics simulations, each one 20 ns long, have been performed at 300, 400 and 500 K. on both proteins in explicit water. Suitable analysis of MD trajectories has allowed a reliable identification of the two cooperative domains (i.e., the less stable one corresponds to external alpha-helices, whereas the more stable one corresponds to the central twisted beta-sheet) and the attribution of the key coupling role to the last and long a-helix of EST2. (C) 2011 Elsevier B.V. All rights reserved.
引用
收藏
页码:1072 / 1077
页数:6
相关论文
共 50 条
  • [41] Conformational Properties of Glycosaminoglycan Disaccharides: A Molecular Dynamics Study
    Lutsyk, Valery
    Plazinski, Wojciech
    JOURNAL OF PHYSICAL CHEMISTRY B, 2021, 125 (39): : 10900 - 10916
  • [42] Molecular dynamics study of the conformational properties of branched alkanes
    Lahtela, M
    Pakkanen, TA
    Nissfolk, F
    JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (33): : 5949 - 5952
  • [43] Molecular Dynamics Study on Conformational Sampling of Triosephosphate Isomerase
    Dantu, Sarath C.
    Wolf, Maarten G.
    Groenhof, Gerrit
    BIOPHYSICAL JOURNAL, 2012, 102 (03) : 451A - 451A
  • [44] Conformational change of calmodulin: A molecular dynamics simulation study
    Li, HZ
    Yokota, K
    7TH WORLD MULTICONFERENCE ON SYSTEMICS, CYBERNETICS AND INFORMATICS, VOL VIII, PROCEEDINGS, 2003, : 47 - 52
  • [45] VASOPRESSIN CONFORMATIONAL FLUCTUATIONS - A MOLECULAR-DYNAMICS STUDY
    SOMOZA, JR
    BRADY, JW
    BIOPOLYMERS, 1988, 27 (06) : 939 - 956
  • [46] MOLECULAR-DYNAMICS STUDY OF THE CONFORMATIONAL PROPERTIES OF CYCLOHEXADECANE
    ZHANG, RS
    MATTICE, WL
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (12): : 9888 - 9894
  • [48] Conformational Dynamics in Alkyl Chains of an Anchored Bilayer: A Molecular Dynamics Study
    Naik, Vikrant V.
    Vasudevan, S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2009, 113 (20): : 8806 - 8813
  • [49] CONFORMATIONAL DYNAMICS IN BULK POLYETHYLENE - A MOLECULAR-DYNAMICS SIMULATION STUDY
    BOYD, RH
    GEE, RH
    HAN, J
    JIN, Y
    JOURNAL OF CHEMICAL PHYSICS, 1994, 101 (01): : 788 - 797
  • [50] Effect of pressure on conformational dynamics in polyethylene: A molecular dynamics simulation study
    Bharadwaj, RK
    Boyd, RH
    MACROMOLECULES, 2000, 33 (16) : 5897 - 5905