The two-dimensional kinetic ballooning theory for ion temperature gradient mode in tokamak

被引:2
|
作者
Xie, T. [1 ]
Zhang, Y. Z. [2 ]
Mahajan, S. M. [3 ]
Hu, S. L. [4 ]
He, Hongda [4 ]
Liu, Z. Y. [5 ]
机构
[1] Sichuan Univ Sci & Engn, Dept Phys, Zigong 643000, Sichuan, Peoples R China
[2] Chinese Acad Sci, Ctr Magnet Fus Theory, Hefei 230026, Anhui, Peoples R China
[3] Univ Texas Austin, Inst Fus Studies, Austin, TX 78712 USA
[4] Southwestern Inst Phys, POB 432, Chengdu 610041, Sichuan, Peoples R China
[5] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
TRANSPORT;
D O I
10.1063/1.5003652
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The two-dimensional (2D) kinetic ballooning theory is developed for the ion temperature gradient mode in an up-down symmetric equilibrium (illustrated via concentric circular magnetic surfaces). The ballooning transform converts the basic 2D linear gyro-kinetic equation into two equations: (1) the lowest order equation (ballooning equation) is an integral equation essentially the same as that reported by Dong et al., [Phys. Fluids B 4, 1867 (1992)] but has an undetermined Floquet phase variable, (2) the higher order equation for the rapid phase envelope is an ordinary differential equation in the same form as the 2D ballooning theory in a fluid model [Xie et al., Phys. Plasmas 23, 042514 (2016)]. The system is numerically solved by an iterative approach to obtain the (phase independent) eigen-value. The new results are compared to the two earlier theories. We find a strongly modified up-down asymmetric mode structure, and non-trivial modifications to the eigen-value. Published by AIP Publishing.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The two-dimensional kinetic ballooning theory for trapped electron mode in tokamak
    Xie, T.
    Zhang, Y. Z.
    Mahajan, S. M.
    Wu, F.
    He, Hongda
    Liu, Z. Y.
    [J]. PHYSICS OF PLASMAS, 2019, 26 (02)
  • [2] Generalised ballooning theory of two-dimensional tokamak modes
    Abdoul, P. A.
    Dickinson, D.
    Roach, C. M.
    Wilson, H. R.
    [J]. PLASMA PHYSICS AND CONTROLLED FUSION, 2018, 60 (02)
  • [3] Linear gyrokinetic theory of two-dimensional ion-temperature-gradient mode in tokamaks
    Qiu, Yuefeng
    Wang, Jie
    Wang, Shaojie
    [J]. PHYSICS OF PLASMAS, 2024, 31 (03)
  • [4] Nonlocal simulation of the transition from ballooning to ion temperature gradient mode turbulence in the tokamak edge
    Hallatschek, K
    Zeiler, A
    [J]. PHYSICS OF PLASMAS, 2000, 7 (06) : 2554 - 2564
  • [5] ION-TEMPERATURE-GRADIENT-DRIVEN BALLOONING MODE IN TOKAMAKS
    HIROSE, A
    ZHANG, L
    ELIA, M
    [J]. PHYSICS OF PLASMAS, 1995, 2 (03) : 859 - 875
  • [6] Ballooning theory of the second kind-two dimensional tokamak modes
    Xie, T.
    Zhang, Y. Z.
    Mahajan, S. M.
    Wang, A. K.
    [J]. PHYSICS OF PLASMAS, 2012, 19 (07)
  • [7] Comparison between kinetic-ballooning-mode-driven turbulence and ion-temperature-gradient-driven turbulence
    Maeyama, S.
    Ishizawa, A.
    Watanabe, T. -H.
    Nakata, M.
    Miyato, N.
    Yagi, M.
    Idomura, Y.
    [J]. PHYSICS OF PLASMAS, 2014, 21 (05)
  • [8] Ballooning theory for micro-tearing mode in tokamak
    Xie, T.
    Mahajan, S. M.
    Hatch, D. R.
    [J]. PHYSICS OF PLASMAS, 2023, 30 (08)
  • [9] Sensitivity of kinetic ballooning mode instability to tokamak equilibrium implementations
    Xie, H. S.
    Xiao, Y.
    Holod, I.
    Lin, Z.
    Belli, E. A.
    [J]. JOURNAL OF PLASMA PHYSICS, 2016, 82
  • [10] KINETIC MODIFICATIONS OF MHD BALLOONING MODE THEORY
    LANE, B
    ANTONSEN, TM
    [J]. BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1979, 24 (08): : 962 - 962