Computer aided diagnosis system for cervical lymph nodes in CT images using deep learning

被引:12
|
作者
Tekchandani, Hitesh [1 ]
Verma, Shrish [1 ]
Londhe, Narendra D. [2 ]
Jain, Rajiv Ratan [3 ]
Tiwari, Avani [4 ]
机构
[1] NIT Raipur, Dept Elect & Telecommun, Cg, India
[2] NIT Raipur, Dept Elect Engn, Cg, India
[3] RCC Raipur, Dept Radiotherapy, Cg, India
[4] RCC Raipur, Dept Oncopathol, Cg, India
关键词
Lymph node; Malignant; Benign; Computed tomography; Deep learning; Attention; Squeeze and excitation; SEGMENTATION; REGIONS; MODELS; HEAD;
D O I
10.1016/j.bspc.2021.103158
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Background and objective: Efficient treatment of head and neck cancer requires fast and reliable detection and diagnosis of cervical lymph nodes (CLNs). In current practices, manual methods for detection and invasive oncopathological tests for diagnosis are considered as the gold standards. These methods suffers from numerous shortcomings which makes them inefficient. This raises the need of a non-invasive and automated computer aided diagnosis (CADx) system. Such CADx system undermines the data for extracting the discriminant information and computed tomography (CT) images are information rich and non-invasive imaging modality for oncological diseases. The design of reliable CADx system demands both accurate detection and classification of CLNs in CT images. Methods: The authors have proposed the deep learning based innovative and customized architecture based on attention mechanism and residual concept with the base UNet model, for the CLNs detection part (LNdtnNet) of the CADx system. While another architecture based on squeeze and excitation network and residual network with the base model of modified VGG, is proposed for the remaining diagnosis part (LNdgsNet) of the proposed CADx System. Results: In first stage, the proposed LNdtnNet for CLNs detection found the best results of sensitivity = 92.78%, and Dice score = 94.18%. In second stage, proposed LNdgsNet attaining an average sensitivity, specificity, accuracy, and area under the curve of 95.62%, 93.88%, 95.28%, and 94.75%, respectively. Conclusion: The proposed both architectures trained offline run on a single platform back to back for testing cases. The overall results confirm the utility of the proposed CADx system.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Computer-aided diagnosis of cataract using deep transfer learning
    Pratap, Turimerla
    Kokil, Priyanka
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 53
  • [42] Computer-Aided Diagnosis and Localization of Glaucoma Using Deep Learning
    Kim, Mijung
    Park, Ho-min
    Zuallaert, Jasper
    Janssens, Olivier
    Van Hoecke, Sofie
    De Neve, Wesley
    PROCEEDINGS 2018 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2018, : 2357 - 2362
  • [43] Computer-Aided Diagnosis of Laryngeal Cancer Based on Deep Learning with Laryngoscopic Images
    Xu, Zhi-Hui
    Fan, Da-Ge
    Huang, Jian-Qiang
    Wang, Jia-Wei
    Wang, Yi
    Li, Yuan-Zhe
    DIAGNOSTICS, 2023, 13 (24)
  • [44] A development of computer-aided diagnosis system using fundus images
    Hayashi, J
    Kunieda, T
    Cole, J
    Soga, R
    Hatanaka, Y
    Lu, M
    Hara, T
    Fujita, H
    VSMM 2001: SEVENTH INTERNATIONAL CONFERENCE ON VIRTUAL SYSTEMS AND MULTIMEDIA, PROCEEDINGS: ENHANCED REALITIES: AUGMENTED AND UNPLUGGED, 2001, : 429 - 438
  • [45] Machine learning techniques for pulmonary nodule computer-aided diagnosis using CT images: A systematic review
    Jin, Haizhe
    Yu, Cheng
    Gong, Zibo
    Zheng, Renjie
    Zhao, Yinan
    Fu, Quanwei
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 79
  • [46] Computer-aided Lymph Node Detection in Abdominal CT Images
    Liu, Jiamin
    White, Jacob M.
    Summers, Ronald M.
    MEDICAL IMAGING 2010: COMPUTER - AIDED DIAGNOSIS, 2010, 7624
  • [47] Computer-aided diagnosis system for abnormalities classification in gastric endoscopy images using machine learning
    Lee S.-A.
    Cho H.
    Cho H.-C.
    Transactions of the Korean Institute of Electrical Engineers, 2020, 69 (01): : 107 - 113
  • [48] Computer-aided diagnosis system for lung cancer based on helical CT images
    Kakinuma, R
    Ohmatsu, H
    Kaneko, M
    Eguchi, K
    Niki, N
    Moriyama, N
    RADIOLOGY, 1996, 201 : 9716 - 9716
  • [49] A Deep Learning Aided Drowning Diagnosis for Forensic Investigations using Post-Mortem Lung CT Images
    Homma, Noriyasu
    Zhang, Xiaoyong
    Qureshi, Amber
    Konno, Takuya
    Kawasumi, Yusuke
    Usui, Akihito
    Funayama, Masato
    Bukovsky, Ivo
    Ichiji, Kei
    Sugita, Norihiro
    Yoshizawa, Makoto
    42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 1262 - 1265
  • [50] A computer-aided diagnosis system for bullous disease based on deep learning
    Wang, Y.
    He, X.
    Li, F.
    Zhu, W.
    JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2019, 139 (05) : S95 - S95