Monte Carlo simulation of angular distribution and fractionation in the zero-fluence isotope sputtering

被引:4
|
作者
Zheng, LP
机构
[1] Acad Sinica, Shanghai Inst Nucl Res, Shanghai 201800, Peoples R China
[2] Acad Sinica, Inst Met Res, Atom Imaging Solids Lab, Shenyang 110015, Peoples R China
[3] Acad Sinica, Int Ctr Mat Phys, Shenyang 110015, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1016/S0168-583X(98)00210-9
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
A static Monte Carlo simulation program has been used to study the influence of primary and secondary knock-on atoms on the angular distribution and the fractionation, for zero-fluence sputtering of Mo-92-Mo-100. At 10 keV Xe ion energy, calculations show that significant depth-dependent momentum asymmetry exists in the near-surface region, as in Refs. (L.P. Zheng, R.S. Li, M.Y.LI, Nucl. Instr, and Meth. B 100 (1995) 490; L.P. Zheng, M.Y. Li, Nucl. Instr. and Meth. B 114(1996) 28). The calculations also show that at the polar emission angle range between 0 degrees and 90 degrees the probabilities of the sputtered primary knock-on atoms for Mo-92 and Mo-100 are small (6.1% for Mo-92 and 6.6% for Mo-100), especially, between 0 degrees and 30 degrees they are very small (2.5% for Mo-92 and 2.8% for Mo-100). At 0.1 keV Ar ion energy, the calculations show that partial momentum flux ratios, for the primary and the secondary knock-on atoms, deviate far from one, through marker plane 1 (about an atomic layer distance from the surface). (C) 1998 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:30 / 34
页数:5
相关论文
共 50 条
  • [31] ANGULAR-DISTRIBUTION OF SPUTTERED NEUTRALS IN A POST MAGNETRON GEOMETRY - MEASUREMENT AND MONTE-CARLO SIMULATION
    EISENMENGERSITTNER, C
    BEYERKNECHT, R
    BERGAUER, A
    BAUER, W
    BETZ, G
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1995, 13 (05): : 2435 - 2443
  • [32] Monte Carlo simulation of Cu thin film growth by magnetron sputtering
    Liu, Z. (zlliu@hust.edu.cn), 2005, Science Press (25):
  • [33] Monte Carlo Simulation of Electric Propulsion Plume Particle Beam Sputtering
    Shang S.-F.
    Jiang L.-X.
    Li T.
    Xiang S.-H.
    Tuijin Jishu/Journal of Propulsion Technology, 2022, 43 (05): : 399 - 407
  • [34] Monte Carlo Simulation of Electrons' and Ions' Trajectories in Magnetron Sputtering Systems
    Holik, Miroslav
    Bradley, James
    Bellido-Gonzalez, Victor
    Monaghan, Dermot
    PLASMA PROCESSES AND POLYMERS, 2009, 6 : S789 - S791
  • [35] Monte-Carlo simulation of conversion coefficient for air kerma from photon fluence
    Hua, Zheng-Dong
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2010, 44 (06): : 647 - 649
  • [36] Monte Carlo fluence simulation for prospective evaluation of interstitial photodynamic therapy treatment plans
    Cassidy, Jeffrey
    Betz, Vaughn
    Lilge, Lothar
    OPTICAL METHODS FOR TUMOR TREATMENT AND DETECTION: MECHANISMS AND TECHNIQUES IN PHOTODYNAMIC THERAPY XXIV, 2015, 9308
  • [37] Monte Carlo simulation of angular response of GRID detectors for GRID mission
    Liu, Qize
    Pan, Xiaofan
    Zheng, Xutao
    Gao, Huaizhong
    Li, Longhao
    Wang, Qidong
    Yang, Zirui
    Tang, Chenchong
    Wu, Wenxuan
    Cheng, Jianping
    Zeng, Zhi
    Zeng, Ming
    Feng, Hua
    Zhang, Binbin
    Wang, Zhonghai
    Zhou, Rong
    Liu, Yuanyuan
    Lin, Lin
    Zhong, Jiayong
    Jiang, Jianyong
    Han, Wentao
    Tian, Yang
    Xu, Benda
    JOURNAL OF INSTRUMENTATION, 2025, 20 (03):
  • [39] Monte Carlo calculation of the angular distribution of cosmic rays at flight altitudes
    Battistoni, G
    Ferrari, A
    Pelliccioni, M
    Villari, R
    RADIATION PROTECTION DOSIMETRY, 2004, 112 (03) : 331 - 343
  • [40] Monte Carlo Simulation of Energy Distribution of Radiation Field
    Liu Yi
    Chen Xiao-Bai
    Wang Chun-Yan
    CEIS 2011, 2011, 15