Multiple solutions for a class of quasilinear problems in Orlicz-Sobolev spaces

被引:4
|
作者
Ait-Mahiout, Karima [1 ]
Alves, Claudianor O. [2 ]
机构
[1] Ecole Normale Super, Lab Theorie Point Fixe & Applicat, BP 92, Algiers 16006, Algeria
[2] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58429900 Campina Grande, PB, Brazil
关键词
Variational methods; quasilinear problems; Orlicz-Sobolev space; SEMILINEAR ELLIPTIC-EQUATIONS; POSITIVE SOLUTIONS; EXISTENCE;
D O I
10.3233/ASY-171428
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This work is concerned with the existence and multiplicity of solutions for the following class of quasilinear problems -Delta(Phi)u + phi(|u|)u = h(epsilon x) f (u) in R-N, u is an element of W-1,W-Phi (R-N), where Phi(t) = integral(|t|)(0) phi(s)s ds is an N-function, Delta(Phi) is the Phi-Laplacian operator, epsilon > 0 and h, f are continuous functions. In the proof of our main result we have used Variational methods, Ekeland's variational principle and some properties of the Nehari manifolds.
引用
收藏
页码:49 / 66
页数:18
相关论文
共 50 条
  • [41] Homogenization of obstacle problems in Orlicz-Sobolev spaces
    Marcon, Diego
    Rodrigues, Jose Francisco
    Teymurazyan, Rafayel
    PORTUGALIAE MATHEMATICA, 2018, 75 (3-4) : 267 - 283
  • [42] HOMOGENEOUS EIGENVALUE PROBLEMS IN ORLICZ-SOBOLEV SPACES
    Bonder, Julian Fernandez
    Salort, Ariel
    Vivas, Hernan
    TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2024, 63 (02) : 429 - 453
  • [43] The limiting Behavior of Solutions to Inhomogeneous Eigenvalue Problems in Orlicz-Sobolev Spaces
    Bocea, Marian
    Mihailescu, Mihai
    Stancu-Dumitru, Denisa
    ADVANCED NONLINEAR STUDIES, 2014, 14 (04) : 977 - 990
  • [44] Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu D.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) : 4441 - 4456
  • [45] MULTIPLE SOLUTIONS FOR A NONLOCAL KIRCHHOFF PROBLEM IN FRACTIONAL ORLICZ-SOBOLEV SPACES
    Azroul, Elhoussine
    Benkirane, Abdelmoujib
    Srati, Mohammed
    Xiang, Mingqi
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2025, 49 (02): : 287 - 303
  • [46] A note on the existence of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Yang Yang
    Jihui Zhang
    Boundary Value Problems, 2012
  • [47] Existence and multiplicity of solutions for a class of quasilinear elliptic equations: An Orlicz-Sobolev space setting
    Fang, Fei
    Tan, Zhong
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 389 (01) : 420 - 428
  • [48] A note on the existence of solutions for a class of quasilinear elliptic equations: an Orlicz-Sobolev space setting
    Yang, Yang
    Zhang, Jihui
    BOUNDARY VALUE PROBLEMS, 2012, : 1 - 7
  • [49] Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces
    Bonanno, Gabriele
    Bisci, Giovanni Molica
    Radulescu, Vicentiu
    COMPTES RENDUS MATHEMATIQUE, 2011, 349 (5-6) : 263 - 268
  • [50] EIGENVALUE PROBLEMS FOR A CLASS OF BI-NONLOCAL EQUATIONS IN ORLICZ-SOBOLEV SPACES
    Nguyen Thanh Chung
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, 2020