Hemodynamic Monitoring Using Switching Autoregressive Dynamics of Multivariate Vital Sign Time Series

被引:0
|
作者
Lehman, Li-wei H. [1 ]
Nemati, Shamim [2 ]
Mark, Roger G. [1 ]
机构
[1] MIT, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] Emory Univ, Atlanta, GA 30322 USA
关键词
MANAGEMENT;
D O I
暂无
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In a critical care setting, shock and resuscitation end-points are often defined based on arterial blood pressure values. Patient-specific fluctuations and interactions between heart rate (HR) and blood pressure (BP), however, may provide additional prognostic value to stratify individual patients' risks for adverse outcomes at different blood pressure targets. In this work, we use the switching autoregressive (SVAR) dynamics inferred from the multivariate vital sign time series to stratify mortality risks of intensive care units (ICUs) patients receiving vasopressor treatment. We model vital sign observations as generated from latent states from an autoregressive Hidden Markov Model (AR-HMM) process, and use the proportion of time patients stayed in different latent states to predict outcome. We evaluate the performance of our approach using minute-by-minute HR and mean arterial BP (MAP) of an ICU patient cohort while on vasopressor treatment. Our results indicate that the bivariate HR/MAP dynamics (AUC 0.74 [0.64, 0.84]) contain additional prognostic information beyond the MAP values (AUC 0.53 [0.42, 0.63]) in mortality prediction. Further HR/MAP dynamics achieved better performance among a subgroup of patients in a low MAP range (median MAP < 65 mmHg) while on pressors. A realtime implementation of our approach may provide clinicians a tool to quantify the effectiveness of interventions and to inform treatment decisions.
引用
收藏
页码:1065 / 1068
页数:4
相关论文
共 50 条
  • [41] Monitoring mean changes in persistent multivariate time series
    Golosnoy, Vasyl
    Seifert, Miriam Isabel
    STATISTICS, 2021, 55 (03) : 475 - 488
  • [42] Monitoring the cross-covariances of a multivariate time series
    Przemysław Śliwa
    Wolfgang Schmid
    Metrika, 2005, 61 : 89 - 115
  • [43] Monitoring the cross-covariances of a multivariate time series
    Sliwa, P
    Schmid, W
    METRIKA, 2005, 61 (01) : 89 - 115
  • [44] PREDICTION OF A MULTIVARIATE TIME-SERIES USING A Q-ORDER AUTOREGRESSIVE MODEL WITH ESTIMATED COEFFICIENT MATRICES
    EBY, LM
    MCCLAVE, JT
    SCHEAFFER, RL
    BIOMETRICS, 1979, 35 (04) : 887 - 887
  • [45] Forecasting time series using Vector Autoregressive Model
    Abdullah, Lemya Taha
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 499 - 511
  • [46] VIMO: VITAL SIGN MONITORING USING COMMODITY MILLIMETER WAVE RADIO
    Wang, Fengyu
    Zhang, Feng
    Wu, Chenshu
    Wang, Beibei
    Liu, K. J. Ray
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 8304 - 8308
  • [47] IoT-Based Vital Sign Monitoring Using UWB Sensor
    Mostafa, Mohamad
    Dayari, Mohammad Saeed
    Chamaani, Somayyeh
    Meghdadi, Vahid
    Habachi, Oussama
    Pousset, Yannis
    UBIQUITOUS NETWORKING, UNET 2019, 2020, 12293 : 136 - 145
  • [48] Vital Sign Monitoring Using FMCW Radar in Various Sleeping Scenarios
    Turppa, Emmi
    Kortelainen, Juha M.
    Antropov, Oleg
    Kiuru, Tero
    SENSORS, 2020, 20 (22) : 1 - 19
  • [49] On CSI-Based Vital Sign Monitoring Using Commodity WiFi
    Wang X.
    Yang C.
    Mao S.
    1600, Association for Computing Machinery (01):
  • [50] Enhanced Vital Sign Monitoring Using FMCW Radar and PCA Analysis
    Alirezazad, Keivan
    Schmitt, Jonas
    Maurer, Linus
    2024 IEEE MTT-S INTERNATIONAL MICROWAVE BIOMEDICAL CONFERENCE, IMBIOC 2024, 2024, : 24 - 26