DECENTRALIZED BEAMFORMING FOR MASSIVE MU-MIMO ON A GPU CLUSTER

被引:0
|
作者
Li, Kaipeng [1 ]
Sharan, Rishi [2 ]
Chen, Yujun [1 ]
Cavallaro, Joseph R. [1 ]
Goldstein, Tom [3 ]
Studer, Christoph [2 ]
机构
[1] Rice Univ, Dept Elect & Comp Engn, POB 1892, Houston, TX 77251 USA
[2] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY USA
[3] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the massive multi-user multiple-input multiple-output (MU-MIMO) downlink, traditional centralized beamforming (or precoding), such as zero-forcing (ZF), entails excessive complexity for the computing hardware, and generates raw base-band data rates that cannot be supported with current interconnect technology and chip I/O interfaces. In this paper, we present a novel decentralized beamforming approach that partitions the base-station (BS) antenna array into separate clusters, each associated with independent computing hardware. We develop a decentralized beamforming algorithm that requires only local channel state information and minimum exchange of consensus information among the clusters. We demonstrate the efficacy and scalability of decentralized ZF beamforming for systems with hundreds of BS antennas using a reference implementation on a GPU cluster.
引用
收藏
页码:590 / 594
页数:5
相关论文
共 50 条
  • [21] Advanced Hybrid Beamforming Technique in MU-MIMO Systems
    Shim, Seong-Joon
    Lee, Seulgi
    Lee, Won-Seok
    Ro, Jae-Hyun
    Baik, Jung-In
    Song, Hyoung-Kyu
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (17):
  • [22] Recursive method for the equivalent baseband channel for hybrid beamforming in massive MU-MIMO mmWave systems
    Ortega, Alvaro Javier
    Sampaio-Neto, Raimundo
    David, Rodrigo Pereira
    [J]. 2020 IEEE LATIN-AMERICAN CONFERENCE ON COMMUNICATIONS (LATINCOM 2020), 2020,
  • [23] Generalized Transceiver Beamforming for DFRC With MIMO Radar and MU-MIMO Communication
    Chen, Li
    Wang, Zhiqin
    Du, Ying
    Chen, Yunfei
    Yu, F. Richard
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2022, 40 (06) : 1795 - 1808
  • [24] Decentralized Baseband Processing With Gaussian Message Passing Detection for Uplink Massive MU-MIMO Systems
    Zhang, Zhenyu
    Dong, Yuanyuan
    Long, Keping
    Wang, Xiyuan
    Dai, Xiaoming
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2022, 71 (02) : 2152 - 2157
  • [25] Study on cluster formation for distributed MU-MIMO
    Xia, Sijie
    Ge, Chang
    Chen, Qiang
    Adachi, Fumiyuki
    [J]. IEICE COMMUNICATIONS EXPRESS, 2021, 10 (03): : 167 - 173
  • [26] Deep-Learning-Based Phase-Only Robust Massive MU-MIMO Hybrid Beamforming
    Almagboul, Mohammed A.
    Shu, Feng
    Abdelgader, Abdeldime M. S.
    [J]. IEEE COMMUNICATIONS LETTERS, 2021, 25 (07) : 2280 - 2284
  • [27] PERFORMANCE ANALYSIS OF LARGE SCALED BEAMFORMING MU-MIMO SYSTEM
    Sahrab, Ammar Ali
    Marghescu, Ion
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN SERIES C-ELECTRICAL ENGINEERING AND COMPUTER SCIENCE, 2016, 78 (02): : 121 - 134
  • [28] Differential Downlink Transmission in Massive MU-MIMO Systems
    Alsifiany, Fahad
    Ikhlef, Aissa
    Alageli, Mahmoud
    Chambers, Jonathon
    [J]. IEEE ACCESS, 2019, 7 : 86906 - 86919
  • [29] VLSI Design of a Nonparametric Equalizer for Massive MU-MIMO
    Jeon, Charles
    Mirza, Gulnar
    Ghods, Ramina
    Maleki, Arian
    Studer, Christoph
    [J]. 2017 FIFTY-FIRST ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2017, : 1504 - 1508
  • [30] Distributed User Selection for Massive MU-MIMO Systems
    Xue, Song
    Qian, Zuping
    Shao, Wei
    Zhong, Wei
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2015, : 329 - 333