Dynamic behavior and modeling of prismatic lithium-ion battery

被引:28
|
作者
Chen, Xiaoping [1 ]
Wang, Tao [1 ]
Zhang, Yu [2 ]
Ji, Hongbo [1 ]
Ji, Yingping [1 ]
Yuan, Quan [1 ]
Li, Ling [1 ]
机构
[1] Ningbo Univ Technol, Dept Mech Engn, Ningbo 315016, Peoples R China
[2] Shanghai Univ Engn Sci, Dept Mech Engn, Shanghai, Peoples R China
关键词
dynamic effect; numerical mechanics model; prismatic lithium-ion battery; SOC dependency; MECHANICAL INTEGRITY BEHAVIOR; REPRESENTATIVE VOLUME ELEMENTS; THERMAL MANAGEMENT-SYSTEM; STATE-OF-CHARGE; COMPUTATIONAL MODEL; HIGH-POWER; CELLS; SIMULATION; MODULE; SUBJECT;
D O I
10.1002/er.5126
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The inevitable vehicle collision has made the safety of lithium-ion battery (LIB) carried by electric vehicles (EVs) a problem that restricts the further and large-scale promotion of EVs. Therefore, establishing the numerical mechanics model of LIBs and studying their mechanical integrity are imperative. In this study, we design indentation, compression, and drop-weight experiments for prismatic LIBs (PLIBs). Mechanical integrity and internal short circuit are analyzed in consideration of state of charge (SOC) and dynamic effects. A homogeneous PLIB model that considers anisotropic property, SOC, and dynamic effects is developed for the first time for application in different loading conditions. After its effectiveness is validated, the affecting parameters (ie, SOC and impact velocity) of the mechanical behaviors during dynamic loadings are investigated using the established model. The results show that strain rate effect and SOC state have impact on the mechanical properties of PLIB. However, the strain rate effect has much larger influence than the SOC state. Results may shed lights on the safety design of PLIBs in a mechanical aspect.
引用
收藏
页码:2984 / 2997
页数:14
相关论文
共 50 条
  • [21] Modeling of the transient behaviors of a lithium-ion battery during dynamic cycling
    Yi, Jaeshin
    Lee, Jeongbin
    Shin, Chee Burm
    Han, Taeyoung
    Park, Seongyong
    JOURNAL OF POWER SOURCES, 2015, 277 : 379 - 386
  • [22] Thermal Modeling and Prediction of The Lithium-ion Battery Based on Driving Behavior
    Wang, Tingting
    Liu, Xin
    Qin, Dongchen
    Duan, Yuechen
    ENERGIES, 2022, 15 (23)
  • [23] Modeling the Dependence of the Discharge Behavior of a Lithium-Ion Battery on the Environmental Temperature
    Kim, Ui Seong
    Yi, Jaeshin
    Shin, Chee Burm
    Han, Taeyoung
    Park, Seongyong
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (05) : A611 - A618
  • [24] Modeling and experimenting the thermal behavior of a lithium-ion battery on a electric vehicle
    Ayche, S.
    Daboussy, M.
    Aglzim, El-H.
    2018 THIRD INTERNATIONAL CONFERENCE ON ELECTRICAL AND BIOMEDICAL ENGINEERING, CLEAN ENERGY AND GREEN COMPUTING (EBECEGC), 2018, : 16 - 22
  • [25] Prismatic lithium-ion batteries
    Ehrlich, GM
    Hellen, RM
    Orndorh, CM
    Dougherty, TA
    IEEE AEROSPACE AND ELECTRONIC SYSTEMS MAGAZINE, 1997, 12 (09) : 7 - 11
  • [26] Thermal Management of Prismatic Lithium-Ion Battery with Minichannel Cold Plate
    Shen, Jianbiao
    Wang, Yunpeng
    Yu, Guizhen
    Li, Honggang
    JOURNAL OF ENERGY ENGINEERING, 2020, 146 (01)
  • [27] Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions
    Panchal, S.
    Dincer, I.
    Agelin-Chaab, M.
    Fraser, R.
    Fowler, M.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 71 : 35 - 43
  • [28] Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery
    Panchal, S.
    Dincer, I.
    Agelin-Chaab, M.
    Fraser, R.
    Fowler, M.
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2016, 99 : 204 - 212
  • [29] Dynamic energy model of a lithium-ion battery
    Menard, Laurianne
    Fontes, Guillaume
    Astier, Stephan
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2010, 81 (02) : 327 - 339
  • [30] Progress in Thermal Modeling for Lithium-ion Battery
    Ma, Xuezhi
    Zhu, Chenyou
    Xie, Zhili
    Xie, Chaoxiang
    Wang, Weiling
    Zheng, Jiechang
    Mu, Daobin
    Wu, Borong
    JOINT INTERNATIONAL CONFERENCE ON ENERGY, ECOLOGY AND ENVIRONMENT ICEEE 2018 AND ELECTRIC AND INTELLIGENT VEHICLES ICEIV 2018, 2018,