Assessing the reliability of spike-in normalization for analyses of single-cell RNA sequencing data

被引:40
|
作者
Lun, Aaron T. L. [1 ]
Calero-Nieto, Fernando J. [2 ]
Haim-Vilmovsky, Liora [3 ,4 ]
Gottgens, Berthold [2 ]
Marioni, John C. [1 ,3 ,4 ]
机构
[1] Univ Cambridge, Li Ka Shing Ctr, Canc Res UK Cambridge Inst, Cambridge CB2 0RE, England
[2] Univ Cambridge, Wellcome Trust & MRC Cambridge Stem Cell Inst, Cambridge CB2 0XY, England
[3] EMBL European Bioinformat Inst, Wellcome Genome Campus, Cambridge CB10 1SD, England
[4] Wellcome Trust Sanger Inst, Wellcome Genome Campus, Cambridge CB10 1SA, England
基金
英国医学研究理事会; 英国惠康基金;
关键词
DIFFERENTIAL EXPRESSION ANALYSIS; COMPUTATIONAL ANALYSIS; HETEROGENEITY; SEQ; TRANSCRIPTOME; DESIGN; NOISE;
D O I
10.1101/gr.222877.117
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
By profiling the transcriptomes of individual cells, single-cell RNA sequencing provides unparalleled resolution to study cellular heterogeneity. However, this comes at the cost of high technical noise, including cell-specific biases in capture efficiency and library generation. One strategy for removing these biases is to add a constant amount of spike-in RNA to each cell and to scale the observed expression values so that the coverage of spike-in transcripts is constant across cells. This approach has previously been criticized as its accuracy depends on the precise addition of spike-in RNA to each sample. Here, we perform mixture experiments using two different sets of spike-in RNA to quantify the variance in the amount of spike-in RNA added to each well in a plate-based protocol. We also obtain an upper bound on the variance due to differences in behavior between the two spike-in sets. We demonstrate that both factors are small contributors to the total technical variance and have only minor effects on downstream analyses, such as detection of highly variable genes and clustering. Our results suggest that scaling normalization using spike-in transcripts is reliable enough for routine use in single-cell RNA sequencing data analyses.
引用
收藏
页码:1795 / 1806
页数:12
相关论文
共 50 条
  • [21] A comparison of integration methods for single-cell RNA sequencing data and ATAC sequencing data
    Kan, Yulong
    Wang, Weihao
    Qi, Yunjing
    Zhang, Zhongxiao
    Liang, Xikeng
    Jin, Shuilin
    QUANTITATIVE BIOLOGY, 2025, 13 (02)
  • [22] MISC: missing imputation for single-cell RNA sequencing data
    Yang, Mary Qu
    Weissman, Sherman M.
    Yang, William
    Zhang, Jialing
    Canaann, Allon
    Guan, Renchu
    BMC SYSTEMS BIOLOGY, 2018, 12
  • [23] An Introduction to the Analysis of Single-Cell RNA-Sequencing Data
    AlJanahi, Aisha A.
    Danielsen, Mark
    Dunbar, Cynthia E.
    MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT, 2018, 10 : 189 - 196
  • [24] SNV identification from single-cell RNA sequencing data
    Schnepp, Patricia M.
    Chen, Mengjie
    Keller, Evan T.
    Zhou, Xiang
    HUMAN MOLECULAR GENETICS, 2019, 28 (21) : 3569 - 3583
  • [25] Normalizing single-cell RNA sequencing data: Challenges and opportunities
    Vallejos C.A.
    Risso D.
    Scialdone A.
    Dudoit S.
    Marioni J.C.
    Nature Methods, 2017, 14 (6) : 565 - 571
  • [26] Analysis of single-cell RNA sequencing data based on autoencoders
    Andrea Tangherloni
    Federico Ricciuti
    Daniela Besozzi
    Pietro Liò
    Ana Cvejic
    BMC Bioinformatics, 22
  • [27] SCRIP: an accurate simulator for single-cell RNA sequencing data
    Qin, Fei
    Luo, Xizhi
    Xiao, Feifei
    Cai, Guoshuai
    BIOINFORMATICS, 2022, 38 (05) : 1304 - 1311
  • [28] The shaky foundations of simulating single-cell RNA sequencing data
    Crowell, Helena L.
    Leonardo, Sarah X. Morillo X.
    Soneson, Charlotte
    Robinson, Mark D.
    GENOME BIOLOGY, 2023, 24 (01)
  • [29] Analysis of single-cell RNA sequencing data based on autoencoders
    Tangherloni, Andrea
    Ricciuti, Federico
    Besozzi, Daniela
    Lio, Pietro
    Cvejic, Ana
    BMC BIOINFORMATICS, 2021, 22 (01)
  • [30] Normalizing single-cell RNA sequencing data: challenges and opportunities
    Vallejos, Catalina A.
    Risso, Davide
    Scialdone, Antonio
    Dudoit, Sandrine
    Marioni, John C.
    NATURE METHODS, 2017, 14 (06) : 565 - 571