Graphene sandwiched platform for surface-enhanced Raman scattering

被引:3
|
作者
Zhao, Yuan [1 ]
Li, Xiyu [2 ]
Zhang, Lichun [1 ]
Chu, Binhua [1 ]
Liu, Qiyi [3 ]
Lu, Yalin [2 ,4 ]
机构
[1] Ludong Univ, Sch Phys & Optoelect Engn, Yantai 264025, Peoples R China
[2] Univ Sci & Technol China, Sch Chem & Mat Sci, Hefei 230026, Anhui, Peoples R China
[3] Ludong Univ, Sch Food Engn, Yantai 264025, Peoples R China
[4] US Air Force Acad, Phys Dept, Laser Opt Res Ctr, Colorado Springs, CO 80840 USA
来源
RSC ADVANCES | 2017年 / 7卷 / 78期
基金
中国国家自然科学基金;
关键词
ELECTRON-BEAM LITHOGRAPHY; LIGHT-MATTER INTERACTIONS; MONOLAYER GRAPHENE; GOLD NANOPARTICLES; HYBRID SYSTEM; HOT-SPOTS; SPECTROSCOPY; SERS; NANOSTRUCTURES; MOLECULES;
D O I
10.1039/c7ra10401d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The graphene-plasmonic metal nanoparticle (NP) hybrid system has attracted much attention for its potential capacity to be used as surface-enhanced Raman scattering (SERS) substrate. Here, we fabricated a SERS substrate by sandwiching monolayer graphene (1LG) between gold (Au) NPs and silver (Ag) nanoarrays (NAs). With modulation of the structural parameters, we have obtained Ag NAs with a gap between the flower-shaped Ag particles as small as 14 nm. Finite element numerical simulations revealed that the Au NP-graphene-Ag NA structure generates high-density hot spots with strong electric field enhancement through the couplings of plasmonic metal NPs. Benefit from the strong electric field enhancement and chemical enhancement, the prepared Au NP-1LG-Ag NA hybrid structure exhibited excellent SERS activity of high sensitivity with the detection limit as low as 0.1 pM for Rhodamine 6G. Moreover, we has achieved the simultaneous detection for both methylene blue and Rhodamine 6G molecules by using the as-prepared Au NP-1LG-Ag NA structure. These results may render the graphene-sandwiched hybrid system to function as a promising tool for SERS sensing applications.
引用
收藏
页码:49303 / 49308
页数:6
相关论文
共 50 条
  • [31] Surface-enhanced Raman spectra on graphene
    Weis, Johan Ek
    Vejpravova, Jana
    Verhagen, Tim
    Melnikova, Zuzana
    Costa, Sara
    Kalbac, Martin
    JOURNAL OF RAMAN SPECTROSCOPY, 2018, 49 (01) : 168 - 173
  • [32] A Review on Surface-Enhanced Raman Scattering
    Pilot, Roberto
    Signorini, Raffaella
    Durante, Christian
    Orian, Laura
    Bhamidipati, Manjari
    Fabris, Laura
    BIOSENSORS-BASEL, 2019, 9 (02):
  • [33] Surface-enhanced Raman scattering holography
    Matz Liebel
    Nicolas Pazos-Perez
    Niek F. van Hulst
    Ramon A. Alvarez-Puebla
    Nature Nanotechnology, 2020, 15 : 1005 - 1011
  • [34] SURFACE-ENHANCED RAMAN-SCATTERING
    BOERIO, FJ
    THIN SOLID FILMS, 1989, 181 : 423 - 433
  • [35] Surface-enhanced Raman scattering and biophysics
    Kneipp, K
    Kneipp, H
    Itzkan, I
    Dasari, RR
    Feld, MS
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (18) : R597 - R624
  • [36] Surface-Enhanced Raman Scattering of Microorganisms
    Premasiri, W. R.
    Moir, D. T.
    Klempner, M. S.
    Ziegler, L. D.
    NEW APPROACHES IN BIOMEDICAL SPECTROSCOPY, 2007, 963 : 164 - 185
  • [37] Surface-enhanced Raman scattering of flavonoids
    Jurasekova, Z.
    Garcia-Ramos, J. V.
    Domingo, C.
    Sanchez-Cortes, S.
    JOURNAL OF RAMAN SPECTROSCOPY, 2006, 37 (11) : 1239 - 1241
  • [38] Surface-enhanced Raman scattering holography
    Liebel, Matz
    Pazos-Perez, Nicolas
    van Hulst, Niek F.
    Alvarez-Puebla, Ramon A.
    NATURE NANOTECHNOLOGY, 2020, 15 (12) : 1005 - U33
  • [39] Surface-Enhanced Raman Scattering of Proteins
    Kahraman, Mehmet
    Sur, Ilknur
    Culha, Mustafa
    XXII INTERNATIONAL CONFERENCE ON RAMAN SPECTROSCOPY, 2010, 1267 : 1055 - 1056
  • [40] Surface-enhanced Raman scattering of hydroxyproline
    Guerrero, Ariel R.
    Aroca, Ricardo F.
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (04) : 478 - 481