Asymptotic behavior of the Rayleigh-Taylor instability

被引:20
|
作者
Duchemin, L [1 ]
Josserand, C
Clavin, P
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge CB3 0WA, England
[2] Univ Paris 06, CNRS, UMR 7607, Modelisat Mecan Lab, F-75252 Paris, France
[3] Univ Aix Marseille 1, IRPHE, CNRS, F-13384 Marseille, France
[4] Univ Aix Marseille 2, IRPHE, CNRS, F-13384 Marseille, France
关键词
D O I
10.1103/PhysRevLett.94.224501
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We investigate long time numerical simulations of the inviscid Rayleigh-Taylor instability at Atwood number one using a boundary integral method. We are able to attain the asymptotic behavior for the spikes predicted by Clavin and Williams for which we give a simplified demonstration. In particular, we observe that the spike's curvature evolves as t(3), while the overshoot in acceleration shows good agreement with the suggested 1/t(5) law. Moreover, we obtain consistent results for the prefactor coefficients of the asymptotic laws. Eventually we exhibit the self-similar behavior of the interface profile near the spike.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [11] THEORY OF THE RAYLEIGH-TAYLOR INSTABILITY
    KULL, HJ
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1991, 206 (05): : 197 - 325
  • [12] Granular Rayleigh-Taylor Instability
    Vinningland, Jan Ludvig
    Johnsen, Oistein
    Flekkoy, Eirik G.
    Toussaint, Renaud
    Maloy, Knut Jorgen
    TRAFFIC AND GRANULAR FLOW '07, 2009, : 577 - +
  • [13] Confined Rayleigh-Taylor instability
    Alqatari, Samar
    Videbaek, Thomas E.
    Nagel, Sidney R.
    Hosoi, Anette
    Bischofberger, Irmgard
    PHYSICAL REVIEW FLUIDS, 2022, 7 (11)
  • [14] Granular Rayleigh-Taylor instability
    Vinningland, Jan Ludvig
    Johnsen, Oistein
    Flekkoy, Eirik G.
    Toussaint, Renaud
    Maloy, Knut Jorgen
    POWDERS AND GRAINS 2009, 2009, 1145 : 1067 - +
  • [15] AN OVERVIEW OF RAYLEIGH-TAYLOR INSTABILITY
    SHARP, DH
    PHYSICA D, 1984, 12 (1-3): : 3 - 18
  • [16] MODEL OF RAYLEIGH-TAYLOR INSTABILITY
    AREF, H
    TRYGGVASON, G
    PHYSICAL REVIEW LETTERS, 1989, 62 (07) : 749 - 752
  • [17] On saturation of Rayleigh-Taylor instability
    Frenkel, AL
    Halpern, D
    IUTAM SYMPOSIUM ON NONLINEAR WAVES IN MULTI-PHASE FLOW, 2000, 57 : 69 - 79
  • [18] Rotating Rayleigh-Taylor instability
    Scase, M. M.
    Baldwin, K. A.
    Hill, R. J. A.
    PHYSICAL REVIEW FLUIDS, 2017, 2 (02):
  • [19] COMPRESSIBLE RAYLEIGH-TAYLOR INSTABILITY
    BAKER, L
    PHYSICS OF FLUIDS, 1983, 26 (04) : 950 - 952
  • [20] Asymptotic behavior of the mixed mass in Rayleigh-Taylor and Richtmyer-Meshkov instability induced flows
    Zhou, Ye
    Cabot, William H.
    Thornber, Ben
    PHYSICS OF PLASMAS, 2016, 23 (05)