A new ratiometric electrochemical sensor for sensitive detection of bisphenol A based on poly-β-cyclodextrin/electroreduced graphene modified glassy carbon electrode

被引:73
|
作者
Zhang, Xia [1 ]
Wu, Liang [1 ]
Zhou, Jiawan [1 ]
Zhang, Xiaohua [1 ]
Chen, Jinhua [1 ]
机构
[1] Hunan Univ, Coll Chem & Chem Engn, State Key Lab Chemo Biosensing & Chemometr, Changsha 410082, Hunan, Peoples R China
关键词
Ratiometric assay; Electrochemical sensor; Bisphenol A; Poly-beta-cyclodextrin; SCREEN-PRINTED ELECTRODE; SINGLE-WALLED CARBON; PASTE ELECTRODE; AMPEROMETRIC BIOSENSOR; SILVER NANOPARTICLES; ORGANIC POLLUTANTS; CYCLODEXTRIN; OXIDE; NANOCOMPOSITE; ISOMERS;
D O I
10.1016/j.jelechem.2015.02.006
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
A ratiometric electrochemical sensor has been developed for highly sensitive and selective detection of bisphenol A. The assay strategy was based on the competitive host-guest interaction between poly-beta-cyclodextrin/electroreduced graphene (P beta-CD/EG) and Rhodamine B (RhB) probe or bisphenol A (BPA) target molecules. RhB can enter into the hydrophobic inner cavity of beta-CD and shows an obvious oxidation peak on the P beta-CD/EG modified glassy carbon electrode. In the presence of BPA, the RhB molecules are displaced by BPA because the host-guest interaction between beta-CD and BPA is stronger than that between beta-CD and RhB. As a result, the oxidation peak current of RhB (I-RhB) decreases and the oxidation peak current of BPA (I-BpA) increases correspondingly. The logarithmic value of I-BPA/I-RhB is linear with the logarithm of BPA concentration in the range of 1-6000 nM and the detection limit is 52 pM (S/N = 3). This strategy provides a new approach for sensitive detection of BPA, and has promising applications in the detection of organic pollutants in real environmental samples. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:97 / 103
页数:7
相关论文
共 50 条
  • [31] An electrochemical chiral sensor based on amino-functionalized graphene quantum dots/β-cyclodextrin modified glassy carbon electrode for enantioselective detection of tryptophan isomers
    Xiao, Qi
    Lu, Shuangyan
    Huang, Chusheng
    Su, Wei
    Zhou, Shuyu
    Sheng, Jiarong
    Huang, Shan
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2017, 14 (09) : 1957 - 1970
  • [32] An electrochemical chiral sensor based on amino-functionalized graphene quantum dots/β-cyclodextrin modified glassy carbon electrode for enantioselective detection of tryptophan isomers
    Qi Xiao
    Shuangyan Lu
    Chusheng Huang
    Wei Su
    Shuyu Zhou
    Jiarong Sheng
    Shan Huang
    Journal of the Iranian Chemical Society, 2017, 14 : 1957 - 1970
  • [33] An Electrochemical Sensor Based on Electropolymerization of ß-Cyclodextrin and Reduced Graphene Oxide on a Glassy Carbon Electrode for Determination of Neonicotinoids
    Ferreira Oliveira, Ana Elisa
    Bettio, Guilherme Braga
    Pereira, Arnaldo Cesar
    ELECTROANALYSIS, 2018, 30 (09) : 1918 - 1928
  • [34] Sensitive Electrochemical Detection of Bisphenol A Using Molybdenum Disulfide/Au Nanorod Composites Modified Glassy Carbon Electrode
    Wang, Mingxia
    Shi, Yifei
    Zhang, Yubin
    Wang, Yang
    Huang, Huayu
    Zhang, Jiangyi
    Song, Jinxi
    ELECTROANALYSIS, 2017, 29 (11) : 2620 - 2627
  • [35] Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene
    Feng, Wanlian
    Liu, Chao
    Lu, Shaoyou
    Zhang, Chuyi
    Zhu, Xiaohua
    Liang, Yong
    Nan, Junmin
    MICROCHIMICA ACTA, 2014, 181 (5-6) : 501 - 509
  • [36] Electrochemical chiral recognition of tryptophan using a glassy carbon electrode modified with β-cyclodextrin and graphene
    Wanlian Feng
    Chao Liu
    Shaoyou Lu
    Chuyi Zhang
    Xiaohua Zhu
    Yong Liang
    Junmin Nan
    Microchimica Acta, 2014, 181 : 501 - 509
  • [37] Electrochemical determination of eugenol using a poly-γ-aminobutyric acid modified glassy carbon electrode
    Yin, Mingjing
    Liu, Shanshan
    Ma, Xinying
    Meng, Xiangyan
    Chao, Mingyong
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2023, 18 (12):
  • [38] A sensitive electrochemical sensor for the determination of carvedilol based on a modified glassy carbon electrode with ordered mesoporous carbon
    Rofouei, Mohammad Kazem
    Khoshsafar, Hamid
    Kalbasi, Roozbeh Javad
    Bagheri, Hasan
    RSC ADVANCES, 2016, 6 (16): : 13160 - 13167
  • [39] An electrochemical sensor based on a modified glassy carbon electrode for detection of epinephrine in the presence of theophylline
    Sarbandian, Zahra
    Beitollahi, Hadi
    ADMET AND DMPK, 2024, 12 (02): : 391 - 402
  • [40] The electrochemical behavior of neurotransmitters at a poly(pyrrole-β-cyclodextrin) modified glassy carbon electrode
    Izaoumen, N
    Bouchta, D
    Zejli, H
    El Kaoutit, M
    Temsamani, KR
    ANALYTICAL LETTERS, 2005, 38 (12) : 1869 - 1885