Statistical Series: Opportunities and challenges of sperm motility subpopulation analysis

被引:100
|
作者
Martinez-Pastor, Felipe [1 ]
Jorge Tizado, E.
Julian Garde, J. [2 ,3 ]
Anel, Luis [1 ]
de Paz, Paulino [1 ]
机构
[1] Univ Leon, INDEGSAL, E-24071 Leon, Spain
[2] CSIC UCLM JCCM, Natl Wildlife Res Inst IREC, Biol Reprod Grp, Albacete 02071, Spain
[3] Inst Reg Dev IDR, Albacete 02071, Spain
关键词
CASA; Automated semen analysis; Sperm subpopulations; Multivariate analysis; Cluster analysis; MULTIVARIATE CLUSTER-ANALYSIS; PRINCIPAL COMPONENT ANALYSIS; DEER EPIDIDYMAL SPERM; GAZELLA-DAMA-MHORR; VARIABLE-SELECTION; REGRESSION-ANALYSES; PATTERN-ANALYSIS; DOG SPERMATOZOA; GENE-EXPRESSION; BOAR;
D O I
10.1016/j.theriogenology.2010.11.034
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computer-assisted sperm analysis (CASA) allows assessing the motility of individual spermatozoa, generating huge datasets. These datasets can be analyzed using data mining techniques such as cluster analysis, to group the spermatozoa in subpopulations with biological meaning. This review considers the use of statistical techniques for clustering CASA data, their challenges and possibilities. There are many clustering approaches potentially useful for grouping sperm motility data, but some options may be more appropriate than others. Future development should focus not only in improvements of subpopulation analysis, but also in finding consistent biological meanings for these subpopulations. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:783 / 795
页数:13
相关论文
共 50 条
  • [41] Analysis of sperm concentration and motility in a microfluidic device
    Yu-An Chen
    Zi-Wei Huang
    Fang-Sheng Tsai
    Chang-Yu Chen
    Cheng-Ming Lin
    Andrew M. Wo
    Microfluidics and Nanofluidics, 2011, 10 : 59 - 67
  • [42] Analysis of sperm motility using optical tweezers
    Nascimento, Jaclyn L.
    Botvinick, Elliot L.
    Shi, Linda Z.
    Durrant, Barbara
    Berns, Michael W.
    JOURNAL OF BIOMEDICAL OPTICS, 2006, 11 (04)
  • [43] Effects of sperm concentration after swim-up on conventional in vitro fertilization rates: Analysis of sperm motility using a sperm motility analysis system
    Kato, M.
    Fukunaga, N.
    Nagai, R.
    Kitasaka, H.
    Yoshimura, T.
    Tamura, F.
    Hasegawa, N.
    Nakayama, K.
    Takeuchi, M.
    Ohno, H.
    Aoyagi, N.
    Kojima, E.
    Itoi, F.
    Hashiba, Y.
    Asada, Y.
    HUMAN REPRODUCTION, 2013, 28 : 159 - 159
  • [44] Statistical Model Checking of Approximate Circuits: Challenges and Opportunities
    Strnadel, Josef
    PROCEEDINGS OF THE 2020 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2020), 2020, : 1574 - 1577
  • [45] Interpretable Machine Learning for Discovery: Statistical Challenges and Opportunities
    Allen, Genevera I.
    Gan, Luqin
    Zheng, Lili
    ANNUAL REVIEW OF STATISTICS AND ITS APPLICATION, 2024, 11 : 97 - 121
  • [46] Challenges and opportunities in bioimage analysis
    Xinyang Li
    Yuanlong Zhang
    Jiamin Wu
    Qionghai Dai
    Nature Methods, 2023, 20 : 958 - 961
  • [47] Challenges and opportunities in bioimage analysis
    Li, Xinyang
    Zhang, Yuanlong
    Wu, Jiamin
    Dai, Qionghai
    NATURE METHODS, 2023, 20 (07) : 958 - 961
  • [49] Effects of cadmium on rat sperm motility evaluated with computer assisted sperm analysis
    Xu, LC
    Wang, SY
    Yang, XF
    Wang, XR
    BIOMEDICAL AND ENVIRONMENTAL SCIENCES, 2001, 14 (04) : 312 - 317
  • [50] Statistical Issues in Subpopulation Analysis of High Content Imaging Data
    Huang, Shuguang
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2010, 17 (07) : 879 - 894