Global existence and convergence rates for the 3-D compressible micropolar equations without heat conductivity
被引:1
|
作者:
Liu, Lvqiao
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
Liu, Lvqiao
[1
]
Huang, Bingkang
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
Huang, Bingkang
[1
]
Zhang, Lan
论文数: 0引用数: 0
h-index: 0
机构:
Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan, Peoples R ChinaWuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
Zhang, Lan
[1
,2
]
机构:
[1] Wuhan Univ, Sch Math & Stat, Wuhan, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan, Peoples R China
Global existence;
convergence rates;
micropolar fluid;
NAVIER-STOKES EQUATIONS;
WELL-POSEDNESS;
TIME DECAY;
PLANCK;
MODEL;
D O I:
10.1080/00036811.2020.1716973
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, the 3-D full compressible micropolar fluid with positive constant viscosity but with zero heat conductivity is considered. Global well-posedness and optimal convergence rates are established for any small initial data and bounded -norm by combining the local existence and a priori estimates. A priori decay-in-time estimates on the pressure and velocity are used to get the uniform bound of entropy.
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Xiamen Univ, Fujian Prov Key Lab Math Modeling & Sci Comp, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Tan, Zhong
Xu, Qiuju
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
Xu, Qiuju
Wang, Huaqiao
论文数: 0引用数: 0
h-index: 0
机构:
Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R ChinaXiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China