Discontinuous Galerkin method for the solution of a transport level-set problem

被引:4
|
作者
Bezchlebova, Eva [1 ]
Dolejsi, Vit [1 ]
Feistauer, Miloslav [1 ]
机构
[1] Charles Univ Prague, Fac Math & Phys, Sokolovska 83, Prague 18675, Czech Republic
关键词
Transport equation; Discontinuous Galerkin space discretization; Space-time discontinuous Galerkin method; Error estimates; Numerical experiments; FINITE-ELEMENT-METHOD; DIFFUSION PROBLEMS; CONSERVATION-LAWS; SCHEME; FLOW;
D O I
10.1016/j.camwa.2016.04.033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The subject of the paper is the numerical analysis of the transport level-set problem discretized by the discontinuous Galerkin method. Without the assumption that the first order nonstationary transport equation contains a reaction term, which is used in a standard literature, we prove error estimates in the L-infinity(L-2)-norm in the case of the space semidiscretization method of lines and in the case of the space time discontinuous Galerkin method in the L-2(L-2)-norm. Numerical experiments support the derived error estimates and show that they are not sharp in the case of the space time discontinuous Galerkin method. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:455 / 480
页数:26
相关论文
共 50 条
  • [31] Discontinuous Galerkin Method for the Pedestrian Flow Problem
    Felcman, J.
    Dolejsi, V.
    Kubera, P.
    INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [32] A Discontinuous Galerkin Method for the Subjective Surfaces Problem
    Bungert, Leon
    Aizinger, Vadym
    Fried, Michael
    JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2017, 58 (01) : 147 - 161
  • [33] A Level-Set Method for Magnetic Substance Simulation
    Ni, Xingyu
    Zhu, Bo
    Wang, Bin
    Chen, Baoquan
    ACM TRANSACTIONS ON GRAPHICS, 2020, 39 (04):
  • [34] PIPELINE SEGMENTATION USING LEVEL-SET METHOD
    Leangaramkul, A.
    Kasetkasem, T.
    Tipsuwan, Y.
    Isshiki, T.
    Chanwimaluang, T.
    Hoonsuwan, P.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3880 - 3883
  • [35] The level-set method for modeling epitaxial growth
    Ratsch, C.
    Petersen, M.
    Caflisch, R. E.
    ICCN 2002: INTERNATIONAL CONFERENCE ON COMPUTATIONAL NANOSCIENCE AND NANOTECHNOLOGY, 2002, : 344 - 347
  • [36] Deep level-set method for Stefan problems
    Shkolnikov, Mykhaylo
    Soner, H. Mete
    Tissot-Daguette, Valentin
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 503
  • [37] A level-set method for the evolution of faceted crystals
    Russo, G
    Smereka, P
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2073 - 2095
  • [38] A LEVEL-SET METHOD FOR PARTICLE DEPOSITION ON SURFACES
    Yap, Y. F.
    Vargas, F. M.
    Chai, J. C.
    PROCEEDINGS OF THE ASME SUMMER HEAT TRANSFER CONFERENCE, 2012, VOL 1, 2012, : 923 - 935
  • [39] A Level-set based Method for Vessel Navigation
    Lv, Xinrong
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 1345 - 1350
  • [40] A level-set method for interfacial flows with surfactant
    Xu, JJ
    Li, ZL
    Lowengrub, J
    Zhao, HK
    JOURNAL OF COMPUTATIONAL PHYSICS, 2006, 212 (02) : 590 - 616