Multi Codebook LVQ-Based Artificial Neural Network Using Clustering Approach

被引:0
|
作者
Ma'sum, M. Anwar [1 ]
Sanabila, H. R. [1 ]
Jatmiko, W. [1 ]
Aprinaldi [1 ]
机构
[1] Univ Indonesia, Fac Comp Sci, Depok, Indonesia
来源
2015 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS) | 2015年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we proposed multicodebook L VQ-based artificial neural network classifier using clustering approach. The classifiers are LVQ, LVQ2-1, GLVQ, and FNGLVQ. The clustering algorithm used to build multi codebook is K -Means, IKMeans, and GMM. Experiment result shows that on synthteic dataset multi codebook FNGLVQ using GMM clustering has higest improvement with 19,53% mprovement compared to FNGL VQ. Whereas on bencmark dataset multi codebook L VQ2-1 using K-Means clustering has higest improvement with 5,83% improvement cmpared to LVQ-2.1
引用
收藏
页码:263 / 268
页数:6
相关论文
共 50 条
  • [21] An approach to unfold the response of a multi-element system using an artificial neural network
    Cordes, E
    Fehrenbacher, G
    Schutz, R
    Sprunck, M
    Hahn, K
    Hofmann, R
    Biersack, JP
    Wahl, W
    RADECS 97: FOURTH EUROPEAN CONFERENCE ON RADIATION AND ITS EFFECTS ON COMPONENTS AND SYSTEMS, 1998, : 271 - 276
  • [22] A multi-target approach for isolated word recognition using artificial neural network
    QI Yingyong and BI Ning(Dept. of Speech and Hearing Sciences. University of Arizona. Tucson
    ChineseJournalofAcoustics, 1994, (02) : 160 - 168
  • [23] An approach to unfold the response of a multi-element system using an artificial neural network
    Cordes, E
    Fehrenbacher, G
    Schutz, R
    Sprunck, M
    Hahn, K
    Hofmann, R
    Biersack, JP
    Wahl, W
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 1998, 45 (03) : 1464 - 1469
  • [24] Clustering: A neural network approach
    Du, K. -L.
    NEURAL NETWORKS, 2010, 23 (01) : 89 - 107
  • [25] IMPLEMENTATION OF A VECTOR QUANTIZATION CODEBOOK DESIGN TECHNIQUE BASED ON A COMPETITIVE LEARNING ARTIFICIAL NEURAL NETWORK
    AHALT, SC
    CHEN, PK
    CHOU, CT
    JUNG, TP
    JOURNAL OF SUPERCOMPUTING, 1992, 5 (04): : 307 - 330
  • [26] A new neural network model based on the LVQ algorithm for multi-class classification of arrhythmias
    Melin, Patricia
    Amezcua, Jonathan
    Valdez, Fevrier
    Castillo, Oscar
    INFORMATION SCIENCES, 2014, 279 : 483 - 497
  • [27] Neural Network Algorithm Based on LVQ for Myocardial Infarction Detection and Localization Using Multi-Lead ECG Data
    Ozhikenov, Kassymbek
    Alimbayeva, Zhadyra
    Alimbayev, Chingiz
    Ozhikenova, Aiman
    Altay, Yeldos
    CMC-COMPUTERS MATERIALS & CONTINUA, 2025, 82 (03): : 5257 - 5284
  • [28] Distributed Sensor Clustering Using Artificial Neural Network With Local Information
    Kong, Peng-Yong
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (21): : 21851 - 21861
  • [29] An approach for ordered dither using artificial neural network
    Chatterjee, Arpitam
    Tudu, Bipan
    Paul, Kanai Chandra
    SECOND INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING, 2010, 7546
  • [30] Novel clustering method for coherency identification using an artificial neural network
    Wang, Mang-Hui
    Chang, Hong-Chan
    IEEE Transactions on Power Systems, 1994, 9 (04): : 2056 - 2062