Multi Codebook LVQ-Based Artificial Neural Network Using Clustering Approach

被引:0
|
作者
Ma'sum, M. Anwar [1 ]
Sanabila, H. R. [1 ]
Jatmiko, W. [1 ]
Aprinaldi [1 ]
机构
[1] Univ Indonesia, Fac Comp Sci, Depok, Indonesia
来源
2015 INTERNATIONAL CONFERENCE ON ADVANCED COMPUTER SCIENCE AND INFORMATION SYSTEMS (ICACSIS) | 2015年
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we proposed multicodebook L VQ-based artificial neural network classifier using clustering approach. The classifiers are LVQ, LVQ2-1, GLVQ, and FNGLVQ. The clustering algorithm used to build multi codebook is K -Means, IKMeans, and GMM. Experiment result shows that on synthteic dataset multi codebook FNGLVQ using GMM clustering has higest improvement with 19,53% mprovement compared to FNGL VQ. Whereas on bencmark dataset multi codebook L VQ2-1 using K-Means clustering has higest improvement with 5,83% improvement cmpared to LVQ-2.1
引用
收藏
页码:263 / 268
页数:6
相关论文
共 50 条
  • [1] LVQ-Based Hand Gesture Recognition Using a Data Glove
    Camastra, Francesco
    De Felice, Domenico
    Smart Innovation, Systems and Technologies, 2013, 19 : 159 - 168
  • [2] Research on Sensor Fault Diagnosis Method based LVQ Neural Network and Clustering Analysis
    Xu, Tao
    2008 7TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-23, 2008, : 6017 - 6020
  • [3] Generating Multi-Codebook Neural Network by Using Intelligent Gaussian Mixture Model Clustering Based on Histogram Information for Multi-Modal Data Classification
    Ma'Sum, M. Anwar
    Alfiany, Noverina
    Jatmiko, Wisnu
    IEEE ACCESS, 2024, 12 : 189449 - 189476
  • [4] Clustering based Short Term Load Forecasting using Artificial Neural Network
    Jain, Amit
    Satish, B.
    2009 IEEE/PES POWER SYSTEMS CONFERENCE AND EXPOSITION, VOLS 1-3, 2009, : 1210 - 1216
  • [5] Iris recognition using LVQ neural network
    Cho, Seongwon
    Kim, Jaemin
    ADVANCES IN NEURAL NETWORKS - ISNN 2006, PT 2, PROCEEDINGS, 2006, 3972 : 26 - 33
  • [6] A Clustering-based Approach for Features Extraction in Spectro-temporal Domain using Artificial Neural Network
    Esfandian, N.
    Hosseinpour, K.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2021, 34 (02): : 452 - 457
  • [7] A clustering-based approach for features extraction in spectro-temporal domain using artificial neural network
    Esfandian, N.
    Hosseinpour, K.
    International Journal of Engineering, Transactions B: Applications, 2021, 34 (02): : 452 - 457
  • [8] A Clustering-based Approach for Features Extraction in Spectro-temporal Domain using Artificial Neural Network
    Esfandian, N.
    Hosseinpour, K.
    International Journal of Engineering, Transactions A: Basics, 2021, 34 (02): : 452 - 457
  • [9] An Intelligent Approach to Sensory Evaluation: LVQ Neural Network
    丁香乾
    杨宁
    肖协忠
    Journal of DongHua University, 2004, (03) : 40 - 42
  • [10] Clustering versus Incremental Learning Multi-Codebook Fuzzy Neural Network for Multi-Modal Data Classification
    Ma'sum, Muhammad Anwar
    Sanabila, Hadaiq Rolis
    Mursanto, Petrus
    Jatmiko, Wisnu
    COMPUTATION, 2020, 8 (01)