Interfacial reactions and mechanical properties of SiC fiber reinforced Ti3SiC2 and Ti3(SiAl)C2 composites

被引:17
|
作者
He, Guangqi [1 ,2 ]
Xu, Jingjun [2 ]
Zhang, Zerong [2 ]
Qian, Yuhai [2 ]
Zuo, Jun [2 ]
Li, Meishuan [2 ]
Liu, Changsheng [1 ]
机构
[1] Northeastern Univ, Sch Mat Sci & Engn, Shenyang 110819, Peoples R China
[2] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Peoples R China
来源
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING | 2021年 / 827卷
基金
中国国家自然科学基金;
关键词
MAX phase; Composite; SiC fiber; Mechanical properties; PLASMA SINTERED TI3SIC2; CARBON-FIBER; MATRIX COMPOSITES; SILICON-CARBIDE; MICROSTRUCTURE; TEMPERATURE; FABRICATION; DENSIFICATION; SICF/TI3SIC2; CERAMICS;
D O I
10.1016/j.msea.2021.142069
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this paper, SiC fiber (SiCf) reinforced Ti3SiC2 and Ti3(SiAl)C2 composites were fabricated by spark plasma sintering at 1250 degrees C and 1300 degrees C for 10 min, respectively. The interfacial reactions between fibers and matrix, as well as the mechanical properties of the two composites, were investigated. XRD, SEM and TEM were used to characterize the phase compositions and microstructures of the as-synthesized composites. The results showed that no interfacial reaction occurred between SiCf and Ti3SiC2 matrix, while it occurred between SiCf fiber and Ti3(SiAl)C2 matrix. In the latter case, the interfacial reaction layer was mainly composed of SiC, TiC, and TiSi2 phases, and its thickness was about 1.2 mu m. Besides, due to the introduction of SiC fibers, both bending strength and fracture toughness of two composites were improved. Based on the investigation of crack propagation, it was proposed that the main strengthening and toughening mechanism was crack bowing for SiCf/Ti3(SiAl)C2 composite, while was fiber pullout, fiber debonding, and residual thermal stress for SiCf/Ti3SiC2 composite.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] MECHANICAL PROPERTIES OF Ti3SiC2 AT HIGH TEMPERATURE
    Y.W.Bao
    Y.C.Zhou
    Acta Metallurgica Sinica(English Letters), 2004, (04) : 465 - 470
  • [32] Microstructure and mechanical properties of Ti3SiC2 ceramics
    Li, Shibo
    Cheng, Laifei
    Wang, Dong
    Zhang, Litong
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2002, 19 (06): : 20 - 24
  • [33] Synthesis of Ti3SiC2/SiC and TiSi2/SiC composites using displacement reactions in the Ti-Si-C system
    Radhakrishnan, R
    Henager, CH
    Brimhall, JL
    Bhaduri, SB
    SCRIPTA MATERIALIA, 1996, 34 (12) : 1809 - 1814
  • [34] Mechanical response and microstructure of 2D carbon fiber reinforced ceramic matrix composites with SiC and Ti3SiC2 fillers
    Yang, Jinshan
    Dong, Shaoming
    Xu, Chengying
    CERAMICS INTERNATIONAL, 2016, 42 (02) : 3019 - 3027
  • [35] Sintering of SiC/Ti3SiC2 composites with high SiC contents *
    Chahhou, B.
    Roger, J.
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2023, 43 (16) : 7314 - 7325
  • [36] Tribological properties of Ti3SiC2
    Sarkar, D
    Basu, B
    Cho, SJ
    Chu, MC
    Hwang, SS
    Park, SW
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 2005, 88 (11) : 3245 - 3248
  • [37] Processing and properties of Ti3SiC2
    El-Raghy, T
    Zavaliangos, A
    Barsoum, M
    Kalidindi, S
    PROCESSING AND FABRICATION OF ADVANCED MATERIALS V, 1996, : 631 - 640
  • [38] Thermal properties of Ti3SiC2
    Barsoum, MW
    El-Raghy, T
    Rawn, CJ
    Porter, WD
    Wang, H
    Payzant, EA
    Hubbard, CR
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1999, 60 (04) : 429 - 439
  • [39] Preparation and Properties of Ti3SiC2
    Yu Tie
    Chen Guoqing
    Fu Xuesong
    Zu Yufei
    Zhou Wenlong
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 : 513 - 517
  • [40] Fabrication of TiC coated short carbon fiber reinforced Ti3SiC2 composites: Process, microstructure and mechanical properties
    Xiong, Yi
    Li, Haodong
    Huang, Jihua
    Ye, Zheng
    Yang, Jian
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2022, 42 (09) : 3770 - 3779