ON A CLASS OF MONOMIAL IDEALS GENERATED BY s-SEQUENCES

被引:0
|
作者
La Barbiera, Monica [1 ]
机构
[1] Univ Messina, Dept Math, I-98166 Messina, Italy
来源
MATHEMATICAL REPORTS | 2010年 / 12卷 / 03期
关键词
monomial ideal; Grobner base; symmetric algebra; PURE;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The symmetric algebra of classes of monomial ideals in a polynomial ring in two sets of variables is studied. In certain cases, the theory of s-sequences permits to compute standard invariants.
引用
收藏
页码:201 / 216
页数:16
相关论文
共 50 条
  • [31] Monomial ideals via square-free monomial ideals
    Faridi, S
    Commutative Algebra: Geometric, Homological, Combinatorial and Computational Aspects, 2006, 244 : 85 - 114
  • [32] Licci squarefree monomial ideals generated in degree two or with deviation two
    Kimura, Kyouko
    Terai, Naoki
    Yoshida, Ken-ichi
    JOURNAL OF ALGEBRA, 2013, 390 : 264 - 289
  • [33] HILBERT'S SYZYGY THEOREM FOR MONOMIAL IDEALS
    Alesandroni, Guillermo
    INTERNATIONAL ELECTRONIC JOURNAL OF ALGEBRA, 2022, 32 : 80 - 85
  • [34] Tameness of local cohomology of monomial ideals with respect to monomial prime ideals
    Rahimi, Ahad
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 211 (01) : 83 - 93
  • [35] Monomial ideals with primary components given by powers of monomial prime ideals
    Herzog, Juergen
    Vladoiu, Marius
    ELECTRONIC JOURNAL OF COMBINATORICS, 2014, 21 (01):
  • [36] Finitely generated ideals in the Nevanlinna class
    Hartmann, Andreas
    Massaneda, Xavier
    Nicolau, Artur
    ISRAEL JOURNAL OF MATHEMATICS, 2019, 231 (01) : 139 - 179
  • [37] Finitely generated ideals in the Nevanlinna class
    Andreas Hartmann
    Xavier Massaneda
    Artur Nicolau
    Israel Journal of Mathematics, 2019, 231 : 139 - 179
  • [38] A note on the multiplier ideals of monomial ideals
    Cheng Gong
    Zhongming Tang
    Czechoslovak Mathematical Journal, 2015, 65 : 905 - 913
  • [39] Splittable ideals and the resolutions of monomial ideals
    Ha, Huy Tai
    Van Tuyl, Adam
    JOURNAL OF ALGEBRA, 2007, 309 (01) : 405 - 425
  • [40] Orderings of monomial ideals
    Aschenbrenner, M
    Pong, WY
    FUNDAMENTA MATHEMATICAE, 2004, 181 (01) : 27 - 74