ASU-Net plus plus : A nested U-Net with adaptive feature extractions for liver tumor segmentation

被引:28
|
作者
Gao, Qinhan [1 ]
Almekkawy, Mohamed [1 ]
机构
[1] Penn State Univ, Sch Elect Engn & Comp Sci, University Pk, PA 16802 USA
关键词
Ultrasound segmentation; CT segmentation; Tumor segmentation; Deep learning; Convolutional neural network;
D O I
10.1016/j.compbiomed.2021.104688
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Locating tumors from medical images is of high importance in medical analysis and diagnosis. To tackle the complicated shape of tumors, we propose a multi-leves.l feature extraction neural network to automatically segment the data. Our proposed model is trained and tested with one liver tumor ultrasound and two CT datasets. We employ ++, a collaborative model that uses modified nested U-Net, as our backbone. The model is integrated with dilated dense short skip connections within convolution blocks to further improve the gradient flow and feature preservation. In addition, we modify the original Atrous Spatial Pyramid Pooling (ASPP) to an adaptive pooling structure for better compatibility with nested U-Net. Adaptive ASPP is designed to extract features from different levels and cover the increasing range of feature extraction with regard to the depth of the nested network. Our model showed its advantage in accurately segmenting different tumor sizes with complex edges and was able to generalize with small and diverse datasets. We further improved our model with the newly introduced AdaBelief optimizer and achieved a faster convergence rate. Segmentation results showed that the proposed model outperformed multiple network structures, and achieved a 0.9153 dice coefficient for the ultrasound dataset, a 0.9413 and a 0.9246 dice coefficient for the two CT datasets.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] MOS-GAN: A U-Net plus plus based GAN for multi-organ segmentation
    Shao, Dangguo
    Zhang, Xin
    Ma, Lei
    Yi, Sanli
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
  • [32] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [33] Optimized U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Milesi, Alexandre
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 15 - 29
  • [34] Evaluation of U-Net plus plus On Low Dose CT Enhancement
    Pan, B.
    Ren, L.
    MEDICAL PHYSICS, 2021, 48 (06)
  • [35] MVP U-Net: Multi-View Pointwise U-Net for Brain Tumor Segmentation
    Zhao, Changchen
    Zhao, Zhiming
    Zeng, Qingrun
    Feng, Yuanjing
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 93 - 103
  • [36] Dual attention U-net for liver tumor segmentation in CT images
    Alirr, Omar Ibrahim
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2024, 19 (02)
  • [37] Modifying U-Net for small dataset - a simplified U-Net version for Liver Parenchyma segmentation
    Prasad, Pravda Jith Ray
    Elle, Ole Jakob
    Lindseth, Frank
    Albregtsen, Fritz
    Kumar, Rahul Prasanna
    MEDICAL IMAGING 2021: COMPUTER-AIDED DIAGNOSIS, 2021, 11597
  • [38] AttU-NET: Attention U-Net for Brain Tumor Segmentation
    Wang, Sihan
    Li, Lei
    Zhuang, Xiahai
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 302 - 311
  • [39] Slim U-Net: Efficient Anatomical Feature Preserving U-net Architecture for Ultrasound Image Segmentation
    Raina, Deepak
    Verma, Kashish
    Chandrashekhara, Sheragaru Hanumanthappa
    Saha, Subir Kumar
    2022 9TH INTERNATIONAL CONFERENCE ON BIOMEDICAL AND BIOINFORMATICS ENGINEERING, ICBBE 2022, 2022, : 41 - 48
  • [40] Feature pyramid U-Net for retinal vessel segmentation
    Liu, Yi-Peng
    Rui, Xue
    Li, Zhanqing
    Zeng, Dongxu
    Li, Jing
    Chen, Peng
    Liang, Ronghua
    IET IMAGE PROCESSING, 2021, 15 (08) : 1733 - 1744