Enhancing NAD+ Salvage Pathway Reverts the Toxicity of Primary Astrocytes Expressing Amyotrophic Lateral Sclerosis-linked Mutant Superoxide Dismutase 1 (SOD1)

被引:74
|
作者
Harlan, Benjamin A. [1 ]
Pehar, Mariana [1 ]
Sharma, Deep R. [1 ]
Beeson, Gyda [2 ]
Beeson, Craig C. [2 ]
Vargas, Marcelo R. [1 ]
机构
[1] Med Univ S Carolina, Dept Cell & Mol Pharmacol & Expt Therapeut, Basic Sci Bldg,Rm 358,MSC 509,173 Ashley Ave, Charleston, SC 29425 USA
[2] Med Univ S Carolina, South Carolina Coll Pharm Drug Discovery & Biomed, Charleston, SC 29425 USA
基金
美国国家卫生研究院;
关键词
MOTOR-NEURON DEGENERATION; NICOTINAMIDE RIBOSIDE; NRF2; ACTIVATION; MOUSE MODEL; METABOLISM; SIRT3; BIOSYNTHESIS; LOCALIZATION; MITOCHONDRIA; INHIBITION;
D O I
10.1074/jbc.M115.698779
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nicotinamide adenine dinucleotide (NAD(+)) participates in redox reactions and NAD(+)-dependent signaling pathways. Although the redox reactions are critical for efficient mitochondrial metabolism, they are not accompanied by any net consumption of the nucleotide. On the contrary, NAD(+)-dependent signaling processes lead to its degradation. Three distinct families of enzymes consume NAD(+) as substrate: poly(ADP-ribose) polymerases, ADP-ribosyl cyclases (CD38 and CD157), and sirtuins (SIRT1-7). Because all of the above enzymes generate nicotinamide as a byproduct, mammalian cells have evolved an NAD(+) salvage pathway capable of resynthesizing NAD(+) from nicotinamide. Overexpression of the rate-limiting enzyme in this pathway, nicotinamide phosphoribosyltransferase, increases total and mitochondrial NAD(+) levels in astrocytes. Moreover, targeting nicotinamide phosphoribosyltransferase to the mitochondria also enhances NAD(+) salvage pathway in astrocytes. Supplementation with the NAD(+) precursors nicotinamide mononucleotide and nicotinamide riboside also increases NAD(+) levels in astrocytes. Amyotrophic lateral sclerosis (ALS) is caused by the progressive degeneration of motor neurons in the spinal cord, brain stem, and motor cortex. Superoxide dismutase 1 (SOD1) mutations account for up to 20% of familial ALS and 1-2% of apparently sporadic ALS cases. Primary astrocytes isolated from mutant human superoxide dismutase 1-overexpressing mice as well as human post-mortem ALS spinal cord-derived astrocytes induce motor neuron death in co-culture. Increasing total and mitochondrial NAD(+) content in ALS astrocytes increases oxidative stress resistance and reverts their toxicity toward co-cultured motor neurons. Taken together, our results suggest that enhancing the NAD(+) salvage pathway in astrocytes could be a potential therapeutic target to prevent astrocyte-mediated motor neuron death in ALS.
引用
收藏
页码:10836 / 10846
页数:11
相关论文
共 50 条
  • [41] Modification of Superoxide Dismutase 1 (SOD1) Properties by a GFP Tag - Implications for Research into Amyotrophic Lateral Sclerosis (ALS)
    Stevens, James C.
    Chia, Ruth
    Hendriks, William T.
    Bros-Facer, Virginie
    van Minnen, Jan
    Martin, Joanne E.
    Jackson, Graham S.
    Greensmith, Linda
    Schiavo, Giampietro
    Fisher, Elizabeth M. C.
    PLOS ONE, 2010, 5 (03): : A8 - A17
  • [42] Current potential pathogenic mechanisms of copper-zinc superoxide dismutase 1 (SOD1) in amyotrophic lateral sclerosis
    Wang, Xin-Xin
    Chen, Wen-Zhi
    Li, Cheng
    Xu, Ren-Shi
    REVIEWS IN THE NEUROSCIENCES, 2024, 35 (05) : 549 - 563
  • [43] Comprehensive in silico analysis and molecular dynamics of the superoxide dismutase 1 (SOD1) variants related to amyotrophic lateral sclerosis
    Coutinho Pereira, Gabriel Rodrigues
    Abrahim Vieira, Barbara de Azevedo
    De Mesquita, Joelma Freire
    PLOS ONE, 2021, 16 (02):
  • [44] Amyotrophic lateral sclerosis with mutation of the Cu/Zn superoxide dismutase gene (SOD1) in a patient with Down syndrome
    Marucci, Gianluca
    Morandi, Luca
    Bartolomei, Earia
    Salvi, Fabrizio
    Pession, Annalisa
    Righi, Alberto
    Lauria, Giuseppe
    Foschini, Maria P.
    NEUROMUSCULAR DISORDERS, 2007, 17 (9-10) : 673 - 676
  • [45] A systematic immunoprecipitation approach reinforces the concept of common conformational alterations in amyotrophic lateral sclerosis-linked SOD1 mutants
    Fujisawa, Takao
    Yamaguchi, Namiko
    Kadowaki, Hisae
    Tsukamoto, Yuka
    Tsuburaya, Naomi
    Tsubota, Atsushi
    Takahashi, Hiromitsu
    Naguro, Isao
    Takahashi, Yuji
    Goto, Jun
    Tsuji, Shoji
    Nishitoh, Hideki
    Homma, Kengo
    Ichijo, Hidenori
    NEUROBIOLOGY OF DISEASE, 2015, 82 : 478 - 486
  • [46] Unsaturated fatty acids induce cytotoxic aggregate formation of amyotrophic lateral sclerosis-linked superoxide dismutase 1 mutants
    Kim, YJ
    Nakatomi, R
    Akagi, T
    Hashikawa, T
    Takahashi, R
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (22) : 21515 - 21521
  • [47] Loss of TDP-43 Inhibits Amyotrophic Lateral Sclerosis-Linked Mutant SOD1 Aggresome Formation in an HDAC6-Dependent Manner
    Xia, Qin
    Wang, Hongfeng
    Zhang, Yan
    Ying, Zheng
    Wang, Guanghui
    JOURNAL OF ALZHEIMERS DISEASE, 2015, 45 (02) : 373 - 386
  • [48] Mutations in Superoxide Dismutase 1 (Sod1) Linked to Familial Amyotrophic Lateral Sclerosis Can Disrupt High-Affinity Zinc-Binding Promoted by the Copper Chaperone for Sod1 (Ccs)
    Boyd, Stefanie D.
    Ullrich, Morgan S.
    Calvo, Jenifer S.
    Behnia, Fatemeh
    Meloni, Gabriele
    Winkler, Duane D.
    MOLECULES, 2020, 25 (05):
  • [49] Autophagic induction of amyotrophic lateral sclerosis-linked Cu/Zn superoxide dismutase 1 G93A mutant in NSC34 cells
    Wei, Yanming
    NEURAL REGENERATION RESEARCH, 2014, 9 (01) : 16 - 24
  • [50] Mutant Copper-Zinc Superoxide Dismutase (SOD1) Induces Protein Secretion Pathway Alterations and Exosome Release in Astrocytes IMPLICATIONS FOR DISEASE SPREADING AND MOTOR NEURON PATHOLOGY IN AMYOTROPHIC LATERAL SCLEROSIS
    Basso, Manuela
    Pozzi, Silvia
    Tortarolo, Massimo
    Fiordaliso, Fabio
    Bisighini, Cinzia
    Pasetto, Laura
    Spaltro, Gabriella
    Lidonnici, Dario
    Gensano, Francesco
    Battaglia, Elisa
    Bendotti, Caterina
    Bonetto, Valentina
    JOURNAL OF BIOLOGICAL CHEMISTRY, 2013, 288 (22) : 15699 - 15711