On a general filter regularization method for the 2D and 3D Poisson equation in physical geodesy

被引:3
|
作者
Nguyen Huy Tuan [1 ]
Binh Thanh Tran [2 ]
Le Dinh Long [3 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Sai Gon Univ, Dept Math & Applicat, Ho Chi Minh City, Vietnam
[3] Inst Computat Sci & Technol, Environm Sci Lab, Ho Chi Minh City, Vietnam
关键词
Poisson equation; Cauchy problem; ill-posed problem; convergence estimates; CAUCHY-PROBLEM; LAPLACE;
D O I
10.1186/1687-1847-2014-258
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider a Cauchy problem for the Poisson equation with nonhomogeneous source. The problem is shown to be ill-posed as the solution exhibits unstable dependence on the given data function. Using a new method, we regularize the given problem and obtain some new results. Two numerical examples are given to illustrate the effectiveness of our method.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] 21/2D or 3D?
    Roth, S
    Küster, B
    Sura, H
    KUNSTSTOFFE-PLAST EUROPE, 2004, 94 (07): : 65 - 67
  • [22] 2D and 3D on demand
    Philippi, Anne
    F & M; Feinwerktechnik, Mikrotechnik, Messtechnik, 1998, 106 (06): : 412 - 414
  • [23] Research on 2D/3D Coupling Method Based on MOC Method
    Liang L.
    Liu Z.
    Wu H.
    Zhang Q.
    Zhao Q.
    Zhang Z.
    Hedongli Gongcheng/Nuclear Power Engineering, 2018, 39 : 20 - 24
  • [24] From 2D to 3D
    Steven De Feyter
    Nature Chemistry, 2011, 3 (1) : 14 - 15
  • [25] 3D shape recursive decomposition by Poisson equation
    Pan, Xiang
    Chen, Qi Hua
    Liu, Zhi
    PATTERN RECOGNITION LETTERS, 2009, 30 (01) : 11 - 17
  • [26] Solving 3D Poisson equation via HDMR
    Kaya, H
    Demiralp, M
    ICNAAM 2004: INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2004, 2004, : 204 - 207
  • [27] Glyphs for General Second-Order 2D and 3D Tensors
    Gerrits, Tim
    Roessl, Christian
    Theisel, Holger
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2017, 23 (01) : 980 - 989
  • [28] A consistent 2D/1D approximation to the 3D neutron transport equation
    Kelley, Blake W.
    Larsen, Edward W.
    NUCLEAR ENGINEERING AND DESIGN, 2015, 295 : 598 - 614
  • [29] General solutions to the 2D Liouville equation
    Crowdy, DG
    INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 1997, 35 (02) : 141 - 149
  • [30] (Free) Software for general partial differential equation problems in non-rectangular 2D and 3D regions
    Sewell, Granville
    BULLETIN OF COMPUTATIONAL APPLIED MATHEMATICS, 2013, 1 (01): : 51 - 54