THE FAREY MAPS MODULO n

被引:0
|
作者
Singerman, D. [1 ]
Strudwick, J. [1 ]
机构
[1] Univ Southampton, Sch Math Sci, Southampton, Hants, England
来源
关键词
Farey graph; regular map; modular surface; automorphisms of Riemann surfaces; REGULAR MAPS;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Farey map is the universal triangular map whose automorphism group is the classical modular group. We study the quotients of the Farey map by the principal congrience subgroups of the modular group. These include many well-known regular triangular maps. We also study the underlying graphs of these quotients.
引用
收藏
页码:39 / 52
页数:14
相关论文
共 50 条
  • [1] Normalizer Maps Modulo N
    Gozutok, Nazli Yazici
    MATHEMATICS, 2022, 10 (07)
  • [2] On the spectrum of Farey and Gauss maps
    Isola, S
    NONLINEARITY, 2002, 15 (05) : 1521 - 1539
  • [3] On the isomorphism problem of α-Farey maps
    Natsui, R
    NONLINEARITY, 2004, 17 (06) : 2249 - 2266
  • [4] Farey-Lorenz Permutations for Interval Maps
    Geller, William
    Misiurewicz, Michal
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (02):
  • [5] THE FAREY TREE EMBODIED - IN BIMODAL MAPS OF THE INTERVAL
    RINGLAND, J
    SCHELL, M
    PHYSICS LETTERS A, 1989, 136 (7-8) : 379 - 386
  • [6] REGULAR COVERINGS AND PARALLEL PRODUCTS OF FAREY MAPS
    Stanier, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2022, 91 (01): : 1 - 18
  • [7] Petrie polygons, Fibonacci sequences and Farey maps
    Singerman, David
    Strudwick, James
    ARS MATHEMATICA CONTEMPORANEA, 2016, 10 (02) : 349 - 357
  • [8] Quasicircles modulo bilipschitz maps
    Rohde, S
    REVISTA MATEMATICA IBEROAMERICANA, 2001, 17 (03) : 643 - 659
  • [9] Periods of rational maps modulo primes
    Robert L. Benedetto
    Dragos Ghioca
    Benjamin Hutz
    Pär Kurlberg
    Thomas Scanlon
    Thomas J. Tucker
    Mathematische Annalen, 2013, 355 : 637 - 660
  • [10] Periods of rational maps modulo primes
    Benedetto, Robert L.
    Ghioca, Dragos
    Hutz, Benjamin
    Kurlberg, Par
    Scanlon, Thomas
    Tucker, Thomas J.
    MATHEMATISCHE ANNALEN, 2013, 355 (02) : 637 - 660