Strong-disorder renormalization group for periodically driven systems

被引:9
|
作者
Berdanier, William [1 ]
Kolodrubetz, Michael [2 ]
Parameswaran, S. A. [3 ]
Vasseur, Romain [4 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Texas Dallas, Dept Phys, Richardson, TX 75080 USA
[3] Univ Oxford, Clarendon Lab, Rudolf Peierls Ctr Theoret Phys, Oxford OX1 3PU, England
[4] Univ Massachusetts, Dept Phys, Amherst, MA 01003 USA
关键词
QUANTUM-STATISTICAL-MECHANICS; ISING SPIN CHAINS; MANY-BODY SYSTEM; FIELD; TIME; THERMALIZATION; LOCALIZATION; INSULATOR; DYNAMICS; BEHAVIOR;
D O I
10.1103/PhysRevB.98.174203
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quenched randomness can lead to robust nonequilibrium phases of matter in periodically driven (Floquet) systems. Analyzing transitions between such dynamical phases requires a method capable of treating the twin complexities of disorder and discrete time-translation symmetry. We introduce a real-space renormalization group approach, asymptotically exact in the strong-disorder limit, and exemplify its use on the periodically driven interacting quantum Ising model. We analyze the universal physics near the critical lines and multicritical point of this model, and demonstrate the robustness of our results to the inclusion of weak interactions.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Dynamically driven renormalization group
    Alessandro Vespignani
    Stefano Zapperi
    Vittorio Loreto
    Journal of Statistical Physics, 1997, 88 : 47 - 79
  • [22] Dynamically Driven Renormalization Group
    J Stat Phys, 1-2 (47):
  • [23] Strong-coupling theory of periodically driven two-level systems
    Wu, Ying
    Yang, Xiaoxue
    PHYSICAL REVIEW LETTERS, 2007, 98 (01)
  • [24] Real-space renormalization group approach to driven diffusive systems
    Hanney, T.
    Stinchcombe, R. B.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (47): : 14535 - 14544
  • [25] Asymptotically exact scenario of strong-disorder criticality in one-dimensional superfluids
    Pollet, Lode
    Prokof'ev, Nikolay V.
    Svistunov, Boris V.
    PHYSICAL REVIEW B, 2014, 89 (05):
  • [26] Chaos in periodically driven systems
    Broer, HW
    Krauskopf, B
    FUNDAMENTAL ISSUES OF NONLINEAR LASER DYNAMICS, 2000, 548 : 31 - 53
  • [27] TUNNELING IN PERIODICALLY DRIVEN SYSTEMS
    GOETSCH, P
    GRAHAM, R
    ANNALEN DER PHYSIK, 1992, 1 (08) : 662 - 673
  • [28] Strong-disorder fixed point in the dissipative random transverse-field ising model
    Schehr, Gregory
    Rieger, Heiko
    PHYSICAL REVIEW LETTERS, 2006, 96 (22)
  • [29] Strong supercooling as a consequence of renormalization group consistency
    Vedran Brdar
    Alexander J. Helmboldt
    Manfred Lindner
    Journal of High Energy Physics, 2019
  • [30] Dynamically driven renormalization group applied to self-organized critical systems
    Vespignani, A
    Zapperi, S
    Loreto, V
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 1998, 12 (12-13): : 1407 - 1417